1.Novel strategy in Dengzhan Shengmai capsule metabolites analysis based on the prediction database
Yuan-yuan LI ; Bo-wen ZHENG ; Cong-yu MA ; Ning SHENG ; Jin-lan ZHANG
Acta Pharmaceutica Sinica 2023;58(8):2468-2475
Dengzhan Shengmai capsule, as a compound Chinese patent medicine, consists of four herbs: Herba Erigerontis, Ginseng, Ophiopogon, and Schisandrae Chinensis Fructus, and contains significant components of flavonoids, lignans, saponins, and organic acids. It is widely used clinically to treat cerebrovascular diseases such as chronic cerebral hypoperfusion and dementia with remarkable efficacy. This study proposes a research strategy for multi-component traditional Chinese medicine metabolites based on prediction databases and unfolds the analysis using Dengzhan Shengmai capsule as an example. Using the UPLC-Q-TOF/MS method, the analytical method was established and detected biological samples such as urine, feces, and bile of rats before and after administration based on the prediction of theoretical metabolites of Dengzhan Shengmai capsule. The possible secondary fragment ion information of metabolites was identified by comparing the detected results with prediction databases. The metabolites were identified based on the archetypal component mass spectrometric cleavage law and multistage mass spectrometric data. 51 metabolites, mainly flavonoid, organic acid, and lignan constituents, were finally identified from rat biosamples based on 306 theoretical metabolites of Dengzhan Shengmai capsule. This study provides a new strategy for the identification of metabolites
2.SUMO1 regulates post-infarct cardiac repair based on cellular heterogeneity
Zhihao LIU ; Xiaozhi LIU ; Li LIU ; Ying WANG ; Jie ZHENG ; Lan LI ; Sheng LI ; Han ZHANG ; Jingyu NI ; Chuanrui MA ; Xiumei GAO ; Xiyun BIAN ; Guanwei FAN
Journal of Pharmaceutical Analysis 2023;13(2):170-186
Small ubiquitin-related modifier(SUMOylation)is a dynamic post-translational modification that maintains cardiac function and can protect against a hypertrophic response to cardiac pressure overload.However,the function of SUMOylation after myocardial infarction(MI)and the molecular details of heart cell responses to SUMO1 deficiency have not been determined.In this study,we demonstrated that SUMO1 protein was inconsistently abundant in different cell types and heart regions after MI.However,SUMO1 knockout significantly exacerbated systolic dysfunction and infarct size after myocardial injury.Single-nucleus RNA sequencing revealed the differential role of SUMO1 in regulating heart cells.Among cardiomyocytes,SUMO1 deletion increased the Nppa+Nppb+Ankrd1+cardiomyocyte subcluster pro-portion after MI.In addition,the conversion of fibroblasts to myofibroblasts subclusters was inhibited in SUMO1 knockout mice.Importantly,SUMO1 loss promoted proliferation of endothelial cell subsets with the ability to reconstitute neovascularization and expressed angiogenesis-related genes.Computational analysis of ligand/receptor interactions suggested putative pathways that mediate cardiomyocytes to endothelial cell communication in the myocardium.Mice preinjected with cardiomyocyte-specific AAV-SUMO1,but not the endothelial cell-specific form,and exhibited ameliorated cardiac remodeling following MI.Collectively,our results identified the role of SUMO1 in cardiomyocytes,fibroblasts,and endothelial cells after Ml.These findings provide new insights into SUMO1 involvement in the patho-genesis of MI and reveal novel therapeutic targets.
3. Effect of altitude hypoxia on blood-brain barrier after subarachnoid hemorrhage based on phosphatidylinositol 3-kinase/protein kinase B/nuclear factor κB pathway in rats
Yan-Na WEI ; Feng-Cun WANG ; Xiang-Lian MA ; Tian-Sha SUO ; Sheng CHEN ; Lan-Gui WANG ; Juan SUN ; Xiu-Li ZHAO
Acta Anatomica Sinica 2023;54(2):156-164
Objective To investigate the effect of plateau hypoxia on the blood-brain barrier after subarachnoid hemorrhage (SAH) in rats. Methods Adult male SD rats (n = 78) were randomly divided into 4 groups: sham group (sham), SAH model group (SAH), plateau hypoxia sham group (Hp sham) and plateau hypoxia SAH model group (Hp SAH). The rat model of plateau hypoxia was established through low-pressure simulation chamber (altitude 5000 m), and the SAH model was established by endovascular perforation method. At 24 hours after SAH, neurobehavior score and SAH grade were assessed. The morphological changes of neurons and apoptosis of nerve cells in the CA1 region of hippocampal were observed by the staining of Nissl and TUNEL. The expression of phosphorylated PI3K (p-PI3K), PI3K, phosphorylated Akt (p-Akt), Akt, phosphorylated nuclear factor κB (p-NF-κB), NF-κB, matrix metalloproteinase-9 (MMP-9), occludin and claudin-5 in hippocampal were detected by the method of Western blotting. The expression of occludin and claudin-5 proteins in the CA1 region of hippocampal were observed by immunofluorescent staining. Results At 24 hours after SAH, the neurobehavior score decreased significantly and SAH grade increased significantly in the SAH and Hp SAH group (P< 0.05). Neurobehavior score decreased significantly in the Hp SAH group compared with the SAH group (P < 0.05). In the SAH group, neurons in the CA1 region of hippocampus were atrophied and deformed, the arrangement were disordered, the number of neurons decreased significantly, and the apoptosis of nerve cells increased significantly(P< 0.05). Plateau hypoxia could aggravate the morphological damage of neurons and apoptosis of nerve cells. The expression of p-PI3K/PI3K, p-Akt/Akt, occludin and claudin-5 proteins decreased significantly, while the expression of p-NF-κB/NF-κB and MMP-9 proteins increased significantly in the SAH and Hp SAH group (P< 0.05). The expression of p-PI3K/PI3K and MMP-9 proteins increased significantly in Hp SAH group compared with the SAH group. The expression of claudin-5 protein increased significantly in Hp sham group compared with the sham group (P < 0.05). Immunofluorescent staining showed that the expression of occludin and claudin-5 proteins in the CA1 region of hippocampus decreased in the SAH group. Plateau hypoxia could further decreased the expression of occludin and claudin-5 proteins. Conclusion Plateau hypoxia aggravates blood-brain barrier disruption after subarachnoid hemorrhage in rats through inhibiting PI3K/Akt/NF-κB pathway.
4. Ethylene Enhances Cd Tolerance through Promoting Lignin Synthesis and Reducing Cadmium Absorption and Accumulation in Tomato
Ying MA ; Ji-Sheng LI ; Lan-Qing HUANG ; Hong-Lei JIA
Chinese Journal of Biochemistry and Molecular Biology 2023;39(7):980-990
Cadmium(Cd) stress seriously inhibits the growth and development of plants, and Cd is enriched in the human body along the food chain, causing major risks to human health. Ethylene(ETH) is known for its role as a traditional plant hormone that plays a crucial part in various stress responses. However, the precise mechanisms by which ETH regulates plant tolerance to Cd remain unclear. In this study, we observed that treatment with 3 mg L
5.Differential transcriptomic landscapes of multiple organs from SARS-CoV-2 early infected rhesus macaques.
Chun-Chun GAO ; Man LI ; Wei DENG ; Chun-Hui MA ; Yu-Sheng CHEN ; Yong-Qiao SUN ; Tingfu DU ; Qian-Lan LIU ; Wen-Jie LI ; Bing ZHANG ; Lihong SUN ; Si-Meng LIU ; Fengli LI ; Feifei QI ; Yajin QU ; Xinyang GE ; Jiangning LIU ; Peng WANG ; Yamei NIU ; Zhiyong LIANG ; Yong-Liang ZHAO ; Bo HUANG ; Xiao-Zhong PENG ; Ying YANG ; Chuan QIN ; Wei-Min TONG ; Yun-Gui YANG
Protein & Cell 2022;13(12):920-939
SARS-CoV-2 infection causes complicated clinical manifestations with variable multi-organ injuries, however, the underlying mechanism, in particular immune responses in different organs, remains elusive. In this study, comprehensive transcriptomic alterations of 14 tissues from rhesus macaque infected with SARS-CoV-2 were analyzed. Compared to normal controls, SARS-CoV-2 infection resulted in dysregulation of genes involving diverse functions in various examined tissues/organs, with drastic transcriptomic changes in cerebral cortex and right ventricle. Intriguingly, cerebral cortex exhibited a hyperinflammatory state evidenced by significant upregulation of inflammation response-related genes. Meanwhile, expressions of coagulation, angiogenesis and fibrosis factors were also up-regulated in cerebral cortex. Based on our findings, neuropilin 1 (NRP1), a receptor of SARS-CoV-2, was significantly elevated in cerebral cortex post infection, accompanied by active immune response releasing inflammatory factors and signal transmission among tissues, which enhanced infection of the central nervous system (CNS) in a positive feedback way, leading to viral encephalitis. Overall, our study depicts a multi-tissue/organ transcriptomic landscapes of rhesus macaque with early infection of SARS-CoV-2, and provides important insights into the mechanistic basis for COVID-19-associated clinical complications.
Animals
;
COVID-19/genetics*
;
Macaca mulatta
;
SARS-CoV-2/genetics*
;
Transcriptome
6.Targeting a novel inducible GPX4 alternative isoform to alleviate ferroptosis and treat metabolic-associated fatty liver disease.
Jie TONG ; Dongjie LI ; Hongbo MENG ; Diyang SUN ; Xiuting LAN ; Min NI ; Jiawei MA ; Feiyan ZENG ; Sijia SUN ; Jiangtao FU ; Guoqiang LI ; Qingxin JI ; Guoyan ZHANG ; Qirui SHEN ; Yuanyuan WANG ; Jiahui ZHU ; Yi ZHAO ; Xujie WANG ; Yi LIU ; Shenxi OUYANG ; Chunquan SHENG ; Fuming SHEN ; Pei WANG
Acta Pharmaceutica Sinica B 2022;12(9):3650-3666
Metabolic-associated fatty liver disease (MAFLD), which is previously known as non-alcoholic fatty liver disease (NAFLD), represents a major health concern worldwide with limited therapy. Here, we provide evidence that ferroptosis, a novel form of regulated cell death characterized by iron-driven lipid peroxidation, was comprehensively activated in liver tissues from MAFLD patients. The canonical-GPX4 (cGPX4), which is the most important negative controller of ferroptosis, is downregulated at protein but not mRNA level. Interestingly, a non-canonical GPX4 transcript-variant is induced (inducible-GPX4, iGPX4) in MAFLD condition. The high fat-fructose/sucrose diet (HFFD) and methionine/choline-deficient diet (MCD)-induced MAFLD pathologies, including hepatocellular ballooning, steatohepatitis and fibrosis, were attenuated and aggravated, respectively, in cGPX4-and iGPX4-knockin mice. cGPX4 and iGPX4 isoforms also displayed opposing effects on oxidative stress and ferroptosis in hepatocytes. Knockdown of iGPX4 by siRNA alleviated lipid stress, ferroptosis and cell injury. Mechanistically, the triggered iGPX4 interacts with cGPX4 to facilitate the transformation of cGPX4 from enzymatic-active monomer to enzymatic-inactive oligomers upon lipid stress, and thus promotes ferroptosis. Co-immunoprecipitation and nano LC-MS/MS analyses confirmed the interaction between iGPX4 and cGPX4. Our results reveal a detrimental role of non-canonical GPX4 isoform in ferroptosis, and indicate selectively targeting iGPX4 may be a promising therapeutic strategy for MAFLD.
7.Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda.
Furong GUI ; Tianming LAN ; Yue ZHAO ; Wei GUO ; Yang DONG ; Dongming FANG ; Huan LIU ; Haimeng LI ; Hongli WANG ; Ruoshi HAO ; Xiaofang CHENG ; Yahong LI ; Pengcheng YANG ; Sunil Kumar SAHU ; Yaping CHEN ; Le CHENG ; Shuqi HE ; Ping LIU ; Guangyi FAN ; Haorong LU ; Guohai HU ; Wei DONG ; Bin CHEN ; Yuan JIANG ; Yongwei ZHANG ; Hanhong XU ; Fei LIN ; Bernard SLIPPERS ; Alisa POSTMA ; Matthew JACKSON ; Birhan Addisie ABATE ; Kassahun TESFAYE ; Aschalew Lemma DEMIE ; Meseret Destaw BAYELEYGNE ; Dawit Tesfaye DEGEFU ; Feng CHEN ; Paul K KURIA ; Zachary M KINYUA ; Tong-Xian LIU ; Huanming YANG ; Fangneng HUANG ; Xin LIU ; Jun SHENG ; Le KANG
Protein & Cell 2022;13(7):513-531
The fall armyworm (FAW), Spodoptera frugiperda, is a destructive pest native to America and has recently become an invasive insect pest in China. Because of its rapid spread and great risks in China, understanding of FAW genetic background and pesticide resistance is urgent and essential to develop effective management strategies. Here, we assembled a chromosome-level genome of a male FAW (SFynMstLFR) and compared re-sequencing results of the populations from America, Africa, and China. Strain identification of 163 individuals collected from America, Africa and China showed that both C and R strains were found in the American populations, while only C strain was found in the Chinese and African populations. Moreover, population genomics analysis showed that populations from Africa and China have close relationship with significantly genetic differentiation from American populations. Taken together, FAWs invaded into China were most likely originated from Africa. Comparative genomics analysis displayed that the cytochrome p450 gene family is extremely expanded to 425 members in FAW, of which 283 genes are specific to FAW. Treatments of Chinese populations with twenty-three pesticides showed the variant patterns of transcriptome profiles, and several detoxification genes such as AOX, UGT and GST specially responded to the pesticides. These findings will be useful in developing effective strategies for management of FAW in China and other invaded areas.
Animals
;
China
;
Genomics
;
Humans
;
Male
;
Pesticides
;
Spodoptera/genetics*
;
Transcriptome
8.Analysis of Epstein-Barr virus activity and clinical characteristics in patients with hemorrhagic fever with renal syndrome
Mingyan XU ; Ying ZHENG ; Yanxin HUANG ; Kaili ZHANG ; Zhaoyu LIU ; Ning MA ; Wei ZHANG ; Lisheng JIANG ; Xin SHENG ; Zhennan TIAN ; Yue ZHAO ; Qiaoyue JIANG ; Lan LIU ; Yinghua LAN ; Yongguo LI
Chinese Journal of Endemiology 2021;40(1):50-54
Objective:To study the Epstein-Barr virus (EBV) activity and its clinical characteristics in patients with hemorrhagic fever with renal syndrome (HFRS). Methods:From January 2016 to August 2017, patients with HFRS who were hospitalized in the First Affiliated Hospital of Harbin Medical University were routinely tested by EBV serology, and were divided into two groups according to their presence or absence of EBV infection, namely EBV active group and non-EBV active group. The clinical data between the two groups were compared and analyzed by SPSS 18.0.Results:A total of 188 HFRS patients were enrolled, including 73 cases in EBV active group and 115 cases in non-EBV active group. The EBV active rate of HFRS patients was 38.83% (73/188). The incidences of lumbago [57.53% (42/73) vs 42.61% (49/115)], abdominal pain [42.47% (31/73) vs 20.00% (23/115)], skin and mucosa congestion [57.53% (42/73) vs 39.13% (45/115)], and conjunctiva edema [50.68% (37/73) vs 28.70% (33/115)] in EBV active group were significantly higher than those in non-EBV active group (χ 2 = 3.983, 11.008, 6.083, 9.239, P < 0.05). There were 10, 7 and 43 patients with acute kidney injury (AKI) stage 1, 2 and 3 in EBV active group and 5, 13 and 53 patients in non-EBV active group. Degree of AKI in EBV active group was higher than that in non-EBV active group, and the difference was statistically significant (χ 2 = 12.615, P < 0.05). In EBV active group, the proportion of patients whose renal function recovery over 15 days [23.29% (17/73)] and white blood cell count [11.26 (3.39 ~ 54.23) × 10 9/L] were significantly higher than those in non-EBV active group [6.96% (8/115), 10.03 (2.91 ~ 66.99) × 10 9/L], and the differences were statistically significant (χ 2 = 10.330, Z = - 2.003, P < 0.05). Conclusion:HFRS patients may cause latent EBV activity, complicate their clinical features, cause severe renal damage and prolong the recovery time of renal function.
10.Effects of ecological factors on shape and ginsenoside of Panax ginseng.
Wen-Qi MA ; Hong-Yang WANG ; Wen-Jin ZHANG ; Sheng WANG ; Xiu-Fu WAN ; Chuan-Zhi KANG ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2021;46(8):1920-1926
The ecological environment is closely related to the growth and quality of authentic medicinal materials. Ginseng is very strict with its natural environment and grows mostly in the damp valleys of forests, and the appearance and chemical composition of ginseng under different growth environments are very different. This article reviews the effects of different ecological factors(including light, temperature, altitude, moisture, soil factors, etc.)on the appearance and chemical composition(mainly ginsenosides) of ginseng. Through systematic review, it is found that soil physical factors are the most important ecological factors that affect the appea-rance of ginseng, and soil bulk density plays a key role; temperature affects ginsenosides in ginseng medicinal materials The dominant ecological factors for the accumulation of chemical ingredents; strong light, high altitude, high soil moisture, low soil nutrient and strong acid soil can influence the accumulation of secondary metabolites in ginseng. Environmental stress can also stimulate the formation and accumulation of secondary metabolites in medicinal plants. Appropriate low temperature stress, high or low water stress, acid or alkali stress can also promote the accumulation of ginsenosides. This article systematically reviews the ecological factors that affect the appearance and chemical composition of ginseng, and clarifies the dominant ecological factors and limiting factors for the formation of ginseng's appearance and quality, as well as beneficial environmental stress factors, in order to provide a theoretical basis for ginseng ecological planting and ginseng quality improvement.
Forests
;
Ginsenosides
;
Panax
;
Plants, Medicinal
;
Soil

Result Analysis
Print
Save
E-mail