1.Annual review of basic research on lung transplantation of China in 2024
Jier MA ; Junmin ZHU ; Lan ZHANG ; Xiaohan JIN ; Xiangyun ZHENG ; Senlin HOU ; Zengwei YU ; Yaling LIU ; Haoji YAN ; Dong TIAN
Organ Transplantation 2025;16(3):386-393
Lung transplantation is the optimal treatment for end-stage lung diseases and can significantly improve prognosis of the patients. However, postoperative complications such as infection, rejection, ischemia-reperfusion injury, and other challenges (like shortage of donor lungs) , limit the practical application of lung transplantation in clinical practice. Chinese research teams have been making continuous efforts and have achieved breakthroughs in basic research on lung transplantation by integrating emerging technologies and cutting-edge achievements from interdisciplinary fields, which has strongly propelled the development of this field. This article will comprehensively review the academic progress made by Chinese research teams in the field of lung transplantation in 2024, with a focus on the achievements of Chinese teams in basic research on lung transplantation. It aims to provide innovative ideas and strategies for key issues in the basic field of lung transplantation and to help China's lung transplantation cause reach a higher level.
2.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
3.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
4.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
5.Discussion on the decoction and dosing methods of rhubarb root and rhizome in classical prescriptions
Zilin REN ; Changxiang LI ; Yuxiao ZHENG ; Xin LAN ; Ying LIU ; Yanhui HE ; Fafeng CHENG ; Qingguo WANG ; Xueqian WANG
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):48-54
The purpose of this paper is to explore the decoction and dosing methods of rhubarb root and rhizome in classical prescriptions and to provide a reference basis for the clinical use of rhubarb root and rhizome. By collating the relevant classical prescriptions of rhubarb root and rhizome in Shanghan Lun and Jingui Yaolüe, the relationship between its decoction and dosing methods and the syndrome was analyzed. The decoction of rhubarb root and rhizome in classical prescriptions can be divided into three categories: simultaneous decoction, decoction later, and other methods (impregnation in Mafei decoction, decoction with water from the well spring first taken in the morning, and pills). If it enters the blood level or wants to slow down, rhubarb root and rhizome should be decocted at the same time with other drugs. If it enters the qi level and wants to speed up, rhubarb root and rhizome should be decocted later. If it wants to upwardly move, rhubarb root and rhizome should be immersed in Mafei decoction. If it wants to suppress liver yang, rhubarb root and rhizome should be decocted with water from the well spring first taken in the morning. If the disease is prolonged, rhubarb root and rhizome should be taken in pill form. The dosing methods of rhubarb root and rhizome can be divided into five categories: draught, twice, three times, before meals, and unspecified. For acute and serious illnesses with excess of pathogenic qi and adequate vital qi, we choose draught. For gastrointestinal diseases, we choose to take the medicine twice. For achieving a moderate and long-lasting effect, we choose to take the medicine three times. If the disease is located in the lower part of the heart and abdomen, we choose to take it before meals. The use of rhubarb root and rhizome in clinical practice requires the selection of the appropriate decoction and dosing methods according to the location of the disease, the severity of the disease, the patient′s constitution, and the condition after taking the medicine.
6.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
7.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
8.Feixin Decoction Treats Hypoxic Pulmonary Hypertension by Regulating Pyroptosis in PASMCs via PPARγ/NF-κB/NLRP3 Signaling Pathway
Junlan TAN ; Xianya CAO ; Runxiu ZHENG ; Wen ZHANG ; Chao ZHANG ; Jian YI ; Feiying WANG ; Xia LI ; Jianmin FAN ; Hui LIU ; Lan SONG ; Aiguo DAI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):1-9
ObjectiveTo investigate the mechanism by which Feixin decoction treats hypoxic pulmonary hypertension (HPH) by regulating the peroxisome proliferator-activated receptor gamma (PPARγ)/nuclear factor-kappa B (NF-κB)/NOD-like receptor pyrin domain containing 3 (NLRP3) signaling pathway. MethodsForty-eight male SD rats were randomly allocated into normal, hypoxia, and low-, medium- and high-dose (5.85, 11.7, 23.4 g·kg-1, respectively) Feixin decoction groups, with 8 rats in each group. Except the normal group, the remaining five groups were placed in a hypoxia chamber with an oxygen concentration of (10.0±0.5)% for 8 h per day, 28 days, and administrated with corresponding drugs during the modeling process. After 4 weeks of treatment, echocardiographic parameters [pulmonary artery acceleration time (PAT), pulmonary artery ejection time (PET), right ventricular anterior wall thickness (RVAWd), and tricuspid annular plane systolic excursion (TAPSE)] were measured for each group. The right ventricular systolic pressure (RVSP) was measured by the right heart catheterization method, and the right ventricular hypertrophy index (RVHI) was calculated by weighing the heart. The pathological changes in pulmonary arterioles were observed by hematoxylin-eosin staining. The co-localization of α-smooth muscle actin (α-SMA) with NLRP3, N-terminal gasdermin D (N-GSDMD), and cysteinyl aspartate-specific proteinase-1 (Caspase-1) in pulmonary arteries was detected by immunofluorescence. The protein levels of PPARγ, NF-κB, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), N-GSDMD, interleukin-1β (IL-1β), interleukin-18(IL-18), and cleaved Caspase-1 in the lung tissue was determined by Western blot. The ultrastructural changes in pulmonary artery smooth muscle cells (PASMCs) were observed by transmission electron microscopy. ResultsCompared with the normal group, the hypoxia group showed increased RVSP and RVHI (P<0.01), decreased right heart function (P<0.01), increased pulmonary vascular remodeling (P<0.01), increased co-localization of α-SMA with NLRP3, N-GSDMD, and Caspase-1 in pulmonary arterioles (P<0.01), up-regulated protein levels of NF-κB, NLRP3, ASC, N-GSDMD, IL-1β, IL-18, and cleaved Caspase-1 in the lung tissue (P<0.05, P<0.01), a down-regulated protein level of PPARγ (P<0.05, P<0.01), and pyroptosis in PASMCs. Compared with the hypoxia group, Feixin decoction reduced RVSP and RVHI, improved the right heart function and ameliorated pulmonary vascular remodeling (P<0.05, P<0.01), decreased the co-localization of α-SMA with NLRP3, N-GSDMD, and Caspase-1 (P<0.05, P<0.01), down-regulated the protein levels of NF-κB, NLRP3, ASC, N-GSDMD, IL-1β, IL-18, and cleaved Caspase-1 in the lung tissue (P<0.05, P<0.01), up-regulated the protein level of PPARγ (P<0.05, P<0.01), and alleviated pyroptosis in PASMCs. ConclusionFeixin decoction can ameliorate pulmonary vascular remodeling and right heart dysfunction in chronically induced HPH rats by regulating pyroptosis in PASMCs through the PPARγ/NF-κB/NLRP3 pathway.
9.Research progress in screening and applications of calcium-activated chloride ion channel modulators in Anoctamin family
Mingda WU ; Qiyuan HONG ; Yuejiao LAN ; Lan YAO ; Shiting XI ; Xueying LIU ; Juntao GAO ; Kai ZHENG ; Feng HAO
Chinese Journal of Pharmacology and Toxicology 2024;38(6):445-454
Calcium-activated chloride channels(CaCCs)are a class of channel proteins that trans-port chloride ions activated by intracellular calcium,which play a crucial role in regulating membrane potential,intracellular calcium balance,and cell excitability,particularly in neurons and muscle cells.In the Anoctamin(Ano)family,Ano1 is the most classic CaCC.Targeted modulators of Ano1 have poten-tial therapeutic effects against such diseases as cancer,cystic fibrosis,hypertension,diarrhea,and asthma.Since the discovery of Ano1 in 2008,several methods for screening CaCC-specific modulators have emerged including high-throughput primary screening of fluorescent proteins,electrophysiological patch clamp technique and virtual screening,and identification of small molecule modulators with diverse pharmacological effects.This paper summarizes the principles,advantages and disadvantages of the mainstream screening methods,and reviews the chemical structures and potential applications of Ano1-specific modulators discovered to date.
10.Effect of cardiac shock wave therapy on electrocardiogram and myocardial perfusion in coronary artery disease patients
Chun-Mei TIAN ; Jing-Jing ZHENG ; Na JIA ; Lin ZHANG ; Bao-Yi LIU ; Jun-Meng LIU ; Ming LAN ; Bing LIU
Chinese Journal of Interventional Cardiology 2024;32(6):317-323
Objective To explore the effect of cardiac shock wave therapy(CSWT)on ST deviation of electrocardiogram and myocardial perfusion imaging in coronary artery disease(CAD)patients.Methods CAD patients who received CSWT in Cardiology Department of Beijing Hospital from December 2016 to August 2022 were enrolled.Three months of CSWT were conducted with a total of 9 times shock wave treatment.Clinical data,myocardial perfusion imaging data and stress electrocardiogram data were collected.Myocardial perfusion score,electrocardiographic data were compared before and after CSWT.Results A total of 55 patients were finally enrolled.There were 43 male and 12 female patients with an average age of(67.45±8.96)years old.ST deviation on 12 leads of electrocardiogram did not show significant difference before and after CSWT.Myocardial perfusion imaging showed global stress perfusion score(P=0.031)and reverse perfusion score(P=0.024).Global rest ischemia score reduced after CSWT(P=0.034).Target stress perfusion score(P=0.002),target reverse perfusion score(P=0.002),target reverse ischemic area(P=0.001)were improved after CSWT.Conclusions CSWT may not influence ST deviation of electrocardiogram,but may improve myocardial ischemia in CAD patients,


Result Analysis
Print
Save
E-mail