1.Effects of imperatorin on malignant biological behavior of gastric cancer cells by regulating ThPOK expression
Lan CHEN ; Lingli XIA ; Ying CHEN ; Gang ZHANG ; Feng WEN
China Pharmacy 2025;36(2):191-196
OBJECTIVE To investigate the effects of imperatorin (IMP-SD) on malignant biological behavior of gastric cancer (GC) cells by regulating zinc finger and BTB domain 7B (ThPOK). METHODS Human GC cells MKN-7 were used as the research object and then divided into control group (no treatment), IMP-SD low-, medium- and high-concentration groups (40, 80 and 160 μmol/L IMP-SD), si-ThPOK and si-NC group [treated with 160 μmol/L IMP-SD and then transfected with ThPOK small interfering RNA (si-ThPOK) or its negative control (si-NC)]. After treatment, cell clone formation, migration and invasion abilities and apoptosis of MKN-7 cells were detected; the killing activity of NK cells, T cells classification, the protein expressions of ThPOK, programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) were all determined. RESULTS Compared with the control group, the number of cell clones, migration number, invasion number, and the protein expressions of PD-1 and PD-L1 were decreased or down-regulated significantly in IMP-SD groups, while the cell apoptotic rate, NK cell killing activity, CD4+ T proportion, the ratio of CD4+ T proportion and CD8+ T proportion (CD4+ T/CD8+ T), and the protein expression of ThPOK were increased or up-regulated significantly, in a concentration-dependent manner (P<0.05). Compared with IMP-SD high-concentration group and si-NC group, the number of cell clones, migration number, invasion number, and the protein expressions of PD-1 and PD-L1 were increased or up-regulated significantly in si-ThPOK group, while the cell apoptotic rate, NK cell killing activity, CD4+ T proportion, CD4+ T/CD8+ T, and the protein expression of ThPOK were decreased or down-regulated significantly (P<0.05). CONCLUSIONS IMP-SD may reduce the clonal formation, migration and invasion abilities of GC cells, promote their apoptosis and inhibit their immune escape by promoting ThPOK expression.
2.Effects of imperatorin on malignant biological behavior of gastric cancer cells by regulating ThPOK expression
Lan CHEN ; Lingli XIA ; Ying CHEN ; Gang ZHANG ; Feng WEN
China Pharmacy 2025;36(2):191-196
OBJECTIVE To investigate the effects of imperatorin (IMP-SD) on malignant biological behavior of gastric cancer (GC) cells by regulating zinc finger and BTB domain 7B (ThPOK). METHODS Human GC cells MKN-7 were used as the research object and then divided into control group (no treatment), IMP-SD low-, medium- and high-concentration groups (40, 80 and 160 μmol/L IMP-SD), si-ThPOK and si-NC group [treated with 160 μmol/L IMP-SD and then transfected with ThPOK small interfering RNA (si-ThPOK) or its negative control (si-NC)]. After treatment, cell clone formation, migration and invasion abilities and apoptosis of MKN-7 cells were detected; the killing activity of NK cells, T cells classification, the protein expressions of ThPOK, programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) were all determined. RESULTS Compared with the control group, the number of cell clones, migration number, invasion number, and the protein expressions of PD-1 and PD-L1 were decreased or down-regulated significantly in IMP-SD groups, while the cell apoptotic rate, NK cell killing activity, CD4+ T proportion, the ratio of CD4+ T proportion and CD8+ T proportion (CD4+ T/CD8+ T), and the protein expression of ThPOK were increased or up-regulated significantly, in a concentration-dependent manner (P<0.05). Compared with IMP-SD high-concentration group and si-NC group, the number of cell clones, migration number, invasion number, and the protein expressions of PD-1 and PD-L1 were increased or up-regulated significantly in si-ThPOK group, while the cell apoptotic rate, NK cell killing activity, CD4+ T proportion, CD4+ T/CD8+ T, and the protein expression of ThPOK were decreased or down-regulated significantly (P<0.05). CONCLUSIONS IMP-SD may reduce the clonal formation, migration and invasion abilities of GC cells, promote their apoptosis and inhibit their immune escape by promoting ThPOK expression.
3.Research progress on strategies to target intestinal microbiota to improve drug resistance in tumor immunotherapy
Hui-ling LI ; Bi-qing LIU ; Ying-nan FENG ; Xin HU ; Lan ZHANG ; Xian-zhe DONG
Acta Pharmaceutica Sinica 2025;60(2):260-268
A growing body of research points out that gut microbiota plays a key role in tumor immunotherapy. By optimizing the composition of intestinal microbiota, it is possible to effectively improve immunotherapy resistance and enhance its therapeutic effect. This article comprehensively analyzes the mechanism of intestinal microbiota influencing tumor immunotherapy resistance, expounds the current strategies for targeted regulation of intestinal microbiota, such as traditional Chinese medicine and plant components, fecal microbiota transplantation, probiotics, prebiotics and dietary therapy, and explores the potential mechanisms of these strategies to improve patients' resistance to tumor immunotherapy. At the same time, the article also briefly discusses the prospects and challenges of targeting intestinal microbiota to improve tumor immunotherapy resistance, which provides a reference for related research to help the strategy research of reversing tumor immunotherapy resistance.
4.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
5.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
6.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
7.Determination method of clopidogrel and its metabolites in rat plasma and its pharmacokinetic study
Huan YI ; Lan MIAO ; Changying REN ; Li LIN ; Mingqian SUN ; Qing PENG ; Ying ZHANG ; Jianxun LIU
China Pharmacy 2025;36(13):1599-1603
OBJECTIVE To establish a method for determining the contents of clopidogrel (CLP), clopidogrel carboxylate (CLP-C), clopidogrel acyl-β-D-glucuronide (CLP-G) and contents of clopidogrel active metabolite (CAM) in rat plasma, and to investigate their in vivo pharmacokinetic characteristics. METHODS The Shisedo CAPCELL ADME column was used with a mobile phase consisting of water and acetonitrile (both containing 0.1% formic acid) in a gradient elution. The flow rate was 0.4 mL/min, and the column temperature was maintained at 20 ℃. The injection volume was 2 μL. The analysis was performed in positive ion mode using electrospray ionization with multiple reaction monitoring. The ion pairs for quantitative analysis were m/z 322.1→211.9 (for CLP), m/z 308.1→197.9 (for CLP-C), m/z 322.1→154.8 (for CLP-G), m/z 504.1→154.9 [for racemic CAM derivative (CAMD)]. Six rats were administered a single intragastric dose of CLP (10 mg/kg). Blood samples were collected before medication and at 0.08, 0.33, 0.66, 1, 2, 4, 6, 10, 23 and 35 hours after medication. The established method was used to detect the serum contents of various components in rats. Pharmacokinetic parameters were then calculated using WinNonlin 6.1 software. RESULTS The linear ranges for CLP, CLP-C and CAMD were 0.08-20.00, 205.00-8 000.00, and 0.04-25.00 ng/mL, respectively (r≥0.990). The relative standard deviations for both intra-day and inter-day precision tests were all less than 15%, and the relative errors for accuracy ranged from -11.68% to 14.40%. The coefficients of variation for the matrix factors were all less than 15%, meeting the requirements for bioanalytical method validation. The results of the pharmacokinetic study revealed that, following a single intagastric administration of CLP in rats, the exposure to the parent CLP in plasma was extremely low. Both the area under the drug concentration-time curve (AUC0-35 h) and the peak concentration of the parent CLP were lower than those of its metabolites. The AUC0-35 h of the active metabolite CAM was approximately 43 times that of CLP, though it had a shorter half-life (2.53 h). The inactive metabolite CLP-C exhibited the highest exposure level, but it reached its peak concentration the latest and was eliminated slowly. The AUC0-35 h of CLP-G was about four times that of CAM, and its half-life was similar to that of CLP-C. CONCLUSIONS This study successfully established an liquid chromatography-tandem mass spectrometry method for the determination of CLP and its three metabolites, and revealed their pharmacokinetic characteristics in rats. Specifically, the parent drug CLP was rapidly eliminated, while the inactive metabolites CLP-C and CLP-G exhibited long half-lives, and active metabolite CAM displayed a transient exposure pattern.
8.Efficacy and Safety of Ivabradine in the Treatment of Chronic Heart Failure in the Context of the New Quadrilateral
Congling CHEN ; Han WU ; Ruobin ZHANG ; Jiachen YING ; Xi LAN ; Jinping ZHANG ; Xian YANG
Chinese Circulation Journal 2024;39(3):256-260
Objectives:To assess the effectiveness and safety of ivabradine for the treatment of chronic heart failure in the context of the new quadruple combination. Methods:Clinical data of 656 chronic heart failure patients hospitalized in Nanjing Drum Tower Hospital from March 2021 to June 2022 were retrospectively collected,and the patients were divided into control group(n=361)and observation group(n=295)according to ivabradine use,and both groups were treated with the new quadruple drug therapy.Propensity score matching was performed,268 patients in the observation group and 268 patients in the control group were successfully matched.The effectiveness(primary endpoint was the composite endpoint of cardiovascular death and rehospitalisation for worsening heart failure within 1 year of discharge;secondary endpoints were rehospitalisation for worsening heart failure,all-cause rehospitalisation,cardiovascular death,and all-cause death)and safety outcome measures(including bradycardia,atrial fibrillation,blurred vision,renal impairment,and hypertension)were compared between the two groups at 1 year after treatment. Results:After matching,there were no statistically significant differences at baseline characteristics between the two groups.Kaplan-Meier survival curve showed that the occurrence rates of primary endpoints(P=0.031),readmission for worsening heart failure(P=0.020),and all-cause readmission(P=0.036)were lower in the observation group than in the control group.Multivariate Cox proportional hazard regression analysis showed that the occurrence rates of primary endpoint events(P=0.045)and readmission for heart failure worsening(P=0.028)were lower in the observation group than in the control group. Conclusions:The ivabradine use on top of the new quadruple therapy regimen in patients with chronic heart failure is beneficial to improve one-year prognosis with favorable safety profile.
9.Screening of key enzyme genes on the palmatine biosynthetic pathway in Fibraurea recisa
Xing-qian ZHOU ; Ying-min GENG ; Ti-cao ZHANG ; Lan-ping ZHENG
Acta Pharmaceutica Sinica 2024;59(6):1873-1882
Palmatine, the main effective ingredient of
10.Characterization and phylogenetic analysis of chloroplast genome of Cynanchum wallichii and Cynanchum otophyllum
Ying-min GENG ; Xing-qian ZHOU ; Ti-cao ZHANG ; Lan-ping ZHENG
Acta Pharmaceutica Sinica 2024;59(3):764-774
italic>Cynanchum wallichii and

Result Analysis
Print
Save
E-mail