1.Correlation between Mer receptor tyrosine kinase and diabetic peripheral neuropathy in Sprague-Dawley rats
Xiaoyang SU ; Wenting CHEN ; Yidan FU ; Yan ZHAO ; Danfeng LAN ; Qiuping YANG
Chinese Journal of Tissue Engineering Research 2025;29(8):1593-1599
BACKGROUND:The pathogenesis of diabetic peripheral neuropathy has not yet been clarified,and TAM(Tyro3,Axl,and MerTK)receptor tyrosine kinases can control apoptotic cells and suppress inflammatory responses in the central nervous system. OBJECTIVE:To investigate the difference of Mer receptor tyrosine kinase(MerTK)levels in plasma and sciatic nerve tissue of Sprague-Dawley rats with type 2 diabetes and diabetic peripheral neuropathy,and to study the correlation between MerTK and diabetic peripheral neuropathy. METHODS:Forty male Sprague-Dawley were randomly divided into control group with 15 rats,type 2 diabetes group with 10 rats,and diabetic peripheral neuropathy group with 15 rats.The control group was fed with ordinary diet,while the experimental groups were fed with high-fat and high-sugar diet.After 6 weeks,intraperitoneal injection of streptozotocin at the minimum dose of 35 mg/kg was administered in the two experimental groups.After 14 days,tail vein blood was collected to detect blood glucose.If blood glucose≥16.7 mmol/L,the model of type 2 diabetes was successfully established.Rats in the diabetic peripheral neuropathy group continued to be fed with a high-sugar and high-fat diet for 8 weeks.The sciatic nerve conduction velocity of rats was detected through live isolation under anesthesia.Blood samples were collected from the abdominal aorta,and the sciatic nerve tissue was collected.Histological changes of nerve fibers in each group were observed under a light microscope to confirm the success of diabetic peripheral neuropathy modeling.ELISA was used to detect peripheral blood glucose,blood lipids and serum MerTK levels in rats;hematoxylin-eosin staining was used to observe the histological changes in the sciatic nerve;immunofluorescence,immunohistochemistry and western blot were used to detect the expression of MerTK in the sciatic nerve tissue. RESULTS AND CONCLUSION:The Sprague-Dawley rat models of type 2 diabetes and type 2 diabetes peripheral neuropathy were successfully constructed,and the modeling rate of diabetic peripheral neuropathy was 80%.Compared with the control group,the blood glucose levels of rats in the type 2 diabetes and diabetic peripheral neuropathy groups were significantly higher(P<0.000 1),while the blood glucose level in the diabetic peripheral neuropathy group was higher than that in the type 2 diabetes group;and the sciatic nerve conduction velocity was significantly decreased(P<0.05),which was lower in the diabetic peripheral neuropathy group than the type 2 diabetes group.Histological examination:Compared with the control group,the sciatic nerve nuclei were reduced in the type 2 diabetes group,with some vacuolar degeneration and phagocytosis;in the diabetic peripheral neuropathy group,the cell body was swollen,the nuclear spacing was increased,vacuolar degeneration was observed,and the myelin sheath was partitioned and unsmooth,and lattice-like axons appeared.Serum MerTK levels were significantly higher in the diabetic peripheral neuropathy group than the control group.Expression of MerTK in the sciatic nerve tissue was significantly upregulated in the diabetic peripheral neuropathy group compared with the control group(P<0.05).To conclude,elevated levels of MerTK in plasma and sciatic nerve tissue of rats with diabetic peripheral neuropathy are presumably related to its anti-inflammatory and immunomodulatory effects.
2.Study on the functions of ERG3 in Candida albicans
Zi YE ; Ruina WANG ; Jiacun LIU ; Shiyun YANG ; Chan LIANG ; Lan YAN
Journal of Pharmaceutical Practice and Service 2025;43(9):431-435
Objective To investigate the biological functions of the ERG3 gene in Candida albicans and its potential value in antifungal therapy. Methods The ERG3 null mutant was constructed by the CRISPR/Cas9 technology. Gas chromatography-mass spectrometry, microbroth dilution method, hyphal induction and mouse systemic infection models were carried out to evaluate sterol metabolism, drug susceptibility, hyphal formation ability and pathogenicity in C. albicans. Results The disruption of the ERG3 gene led to disordered sterol metabolism in C. albicans with a significant increased level of episterol, 14α-methylfecosterol and ergosta-7,22-dienol. The ERG3 null mutant exhibited significantly reduced susceptibility to antifungal azole and polyene drugs, which suggested that ERG3 involve in regulating drug resistance. Although the disruption of ERG3 inhibited hyphal growth and biofilm formation, it did not significantly alter the pathogenicity of the strain in a mouse model of systemic fungal infection. Conclusion The ERG3 gene was a key regulator in the ergosterol synthesis pathway in C. albicans. Its deletion induced multi-drug resistance by reshaping sterol metabolism, while pathogenicity maintenance depended on compensatory mechanisms. This study provided critical insights for developing antifungal drugs targeting sterol metabolism and overcoming drug resistance.
3.Mechanism of action of the nuclear factor-kappa B signaling pathway in liver diseases and its potential as a therapeutic target
Wenqian FENG ; Yang DU ; Dewen MAO ; Weiyu CHEN ; Lei FU ; Luyi YAN ; Chun YAO ; Yanmei LAN
Journal of Clinical Hepatology 2025;41(9):1949-1955
Nuclear factor-kappa B (NF-κB) is an important intracellular transcription factor widely involved in the processes such as immune response, inflammatory response, cell proliferation, and apoptosis. The abnormal activation of the NF-κB signaling pathway plays a pivotal role in various liver diseases including chronic hepatitis, liver fibrosis, liver cirrhosis, and hepatocellular carcinoma. Extensive studies have shown that inhibiting NF-κB activity may effectively reduce inflammation and fibrosis and improve metabolic disorders. Several natural compounds, such as matrine and salvianolic acid B, have shown the potential in suppressing NF-κB activity, thereby exerting anti-inflammatory, anti-fibrotic, and anti-tumor effects. This article systematically reviews the critical role of the NF-κB signaling pathway in liver diseases and its potential as a therapeutic target, in order to highlight its potential as a therapeutic target for liver diseases and provide new directions for the treatment of liver diseases.
4.Association between QRS voltages and amyloid burden in patients with cardiac amyloidosis.
Jing-Hui LI ; Changcheng LI ; Yucong ZHENG ; Kai YANG ; Yan HUANG ; Huixin ZHANG ; Xianmei LI ; Xiuyu CHEN ; Linlin DAI ; Tian LAN ; Yang SUN ; Minjie LU ; Shihua ZHAO
Chinese Medical Journal 2024;137(3):365-367
5.Research Advance of Chinese Medicine in Treating Atherosclerosis: Focus on Lipoprotein-Associated Phospholipase A2.
Lu-Ming WANG ; Wen-Lan ZHANG ; Nuan LYU ; Yan-Rong SUO ; Lin YANG ; Bin YU ; Xi-Juan JIANG
Chinese journal of integrative medicine 2024;30(3):277-288
As a serious cardiovascular disease, atherosclerosis (AS) causes chronic inflammation and oxidative stress in the body and poses a threat to human health. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a member of the phospholipase A2 (PLA2) family, and its elevated levels have been shown to contribute to AS. Lp-PLA2 is closely related to a variety of lipoproteins, and its role in promoting inflammatory responses and oxidative stress in AS is mainly achieved by hydrolyzing oxidized phosphatidylcholine (oxPC) to produce lysophosphatidylcholine (lysoPC). Moreover, macrophage apoptosis within plaque is promoted by localized Lp-PLA2 which also promotes plaque instability. This paper reviews those researches of Chinese medicine in treating AS via reducing Lp-PLA2 levels to guide future experimental studies and clinical applications related to AS.
Humans
;
1-Alkyl-2-acetylglycerophosphocholine Esterase
;
Medicine, Chinese Traditional
;
Atherosclerosis/drug therapy*
;
Lipoproteins
;
Plaque, Atherosclerotic
;
Biomarkers
6.Rapid Determination of 32 Kinds of Veterinary Drug Residues in Eggs Using Modified QuEChERS Based on Reduced Graphene Oxide-coated Melamine Sponge by Ultra-High Liquid Chromatography-Tandem Mass Spectrometry
Xu XU ; Jia LYU ; Lan-Rui YANG ; Zhu-Chen HOU ; Bao-Cheng JI ; Yan-Hong BAI
Chinese Journal of Analytical Chemistry 2024;52(1):121-129,中插38-中插43
A rapid analytical method for simultaneous determination of 32 kinds of multi-residue veterinary drugs in eggs was developed using a modified QuEChERS technique based on a reduced graphene oxide-coated melamine sponge(r-GO@MeS)by ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS).The influences of graphene oxide(GO)concentrations,sponge dosages,and purification modes on drug recoveries were investigated during the purification process.The optimal purification conditions involved using a GO concentration of 0.5 mg/mL,a sponge dosage of 6.0 cm3/mL,and a dynamic purification mode of 5 extrusion cycles.Separation was achieved using an Agilent Eclipse Plus C18 RRHD column(100 mm×2.1 mm,1.8 μm),and quantitative analysis was performed by the external standard method using an electrospray ionization source(ESI)in multiple reaction monitoring(MRM)mode.The results showed that all 32 kinds of veterinary drugs exhibited good linear correlation with coefficients greater than 0.999,and matrix effects(MEs)ranging from?7.8%to 18.9%.The limits of detection(LODs)and quantification(LOQs)ranged from 0.2 to 10.2 μg/kg and from 0.6 to 28.0 μg/kg,respectively.The recoveries for the three spiked levels were in the range of 66.5%?117.5%,with intra-day and inter-day precision(Relative standard deviation)below 13.3%and 16.3%,respectively.The synthetic r-GO@MeS exhibited efficient matrix purification without the need of high-speed centrifugation or strong magnetic field assistance.This significantly shorted the sample pretreatment time and improved the convenience of the matrix purification process.Combined with UPLC-MS/MS,the method was suitable for the rapid determination of multi-residue veterinary drugs in eggs.
7.Risk factors for poor prognosis in patients with extracorporeal cardiopulmonary resuscitation
Junjun WANG ; Shuai TONG ; Ruyi LEI ; Xinya JIA ; Xiaodong SONG ; Tangjuan ZHANG ; Hong WANG ; Yan ZHOU ; Renjie LI ; Xingqiang ZHU ; Chujun YANG ; Chao LAN
Chinese Journal of Emergency Medicine 2024;33(2):215-221
Objective:To analyze the clinical characteristics of patients undergoing extracorporeal cardiopulmonary resuscitation (ECPR), and to explore the risk factors leading to poor prognosis.Methods:The clinical data of 95 patients with ECPR admitted to the First Affiliated Hospital of Zhengzhou University from January 2020 to May 2023 were retrospectively analyzed. According to the survival status at the time of discharge, the patients were divided into the survival group and death group. The difference of clinical data between the two groups was compared to explore the risk factors related to death and poor prognosis. Risk factors associated with death were identified by Binary Logistic regression analysis. Results:A total of 95 patients with ECPR were included in this study, 62 (65.3%) died and 33 (34.7%) survived at discharge. Patients in the death group had longer low blood flow time [40 (30, 52.5) min vs. 30 (24.5, 40) min ] and total cardiac arrest time[40 (30, 52.5) min vs. 30(24.5, 40) min], shorter total hospital stay [3 (2, 7.25) d vs. 19 (13.5, 31) d] and extracorporeal membrane oxygenation (ECMO) assisted time [26.5 (17, 50) h vs. 62 (44, 80.5) h], and more IHCA patients (56.5% vs. 33.3%) and less had spontaneous rhythm recovery before ECMO (37.1% vs. 84.8%). Initial lactate value [(14.008 ± 5.188) mmol/L vs.(11.23 ± 4.718) mmol/L], APACHEⅡ score [(30.10 ± 7.45) vs. (25.88 ± 7.68)] and SOFA score [12 (10.75, 16) vs. 10 (9.5, 13)] were higher ( P< 0.05). Conclusions:No spontaneous rhythm recovery before ECMO, high initial lactic acid and high SOFA score are independent risk factors for poor prognosis in ECPR patients.
8.Exploring the Mechanism of Anti-asthma Effect of Fujiu Patch on Modulation of Th17/Treg Immune Balance Based on IL-6/STAT3 and IL-2/STAT5 Signaling Pathways
Kun FU ; Yan YANG ; Yiling LU ; Peng ZHONG ; Lan ZHAO ; Min XU
Traditional Chinese Drug Research & Clinical Pharmacology 2024;35(1):26-34
Objective This study aims to investigate the regulatory effects of Fujiu Patch(composed of Sinapis Semen,Kansui Radix,Corydalis Rhizoma and Asari Radix et Rhizoma)on the CD4+ T helper 17 cell(Th17)/CD4+CD25+ regulatory T cell(Treg)balance in asthmatic rats via the signal pathway of IL-6/signal transducer and activator of transcription 3(STAT3)as well as IL-2/signal transducer and activator of transcription 5(STAT5),and to reveal its anti-asthma mechanisms.Methods An experimental asthma model was constructed by ovalbumin(OVA)combined with aluminum hydroxide sensitization and challenge,and then the rats were administered with Fujiu Patch at Dazhui(DU14),Feishu(BL13)and Shenshu(BL23)points for 4 hours each time,once every other day for 7 times.Immunohistochemistry was used to detect the positive expressions of Th17 specific cytokine(IL-17)and Treg transcription factor(Foxp3)in rat lung tissue.The percentage of Th17 and Treg cells in peripheral blood was examined by flow cytometry analysis,and the expressions of IL-6/STAT3 and IL-2/STAT5 pathway-related proteins in lung tissue were assayed with Western Blot.Results Compared to the model group,IL-17 positive expression in the rat lung showed a significant reduction in the Fujiu Patch group(P<0.01),while the positive expression of Foxp3 was obviously increased(P<0.05).Meanwhile,the protein expression levels of IL-6 and phospho-STAT3 were were significantly declined(P<0.01),and the protein expression levels of IL-2 and phospho-STAT5 were were significantly elevated(P<0.01).However,there was no significant alteration in the total protein expressions of STAT3 and STAT5(P>0.05).Furthermore,the proportion of Th17 cells in peripheral blood of rats in the Fujiu Patch group was lower than that in the model group,while the proportion of Treg cells was higher than that in the model group.Statistically-significant differences were observed(all P<0.01).Conclusion These findings indicate that Th17/Treg immune imbalance occurs in asthmatic rat.Fujiu Patch may exert anti-asthma effects via inhibiting the expression of IL-6,downregulating the expression of phospho-STAT3,diminishing the level of IL-17-producing Th17 cells,as well as increasing the expressions of IL-2-mediated STAT5 phosphorylation,raising the level of Foxp3-expressing Treg cells,promoting Th17/Treg balance and suppressing immune responses in rat with asthma.
9.KDM4A promotes the migration and invasion of breast cancer cell line MDA-MB-231 by downregulating BMP9
Yuanxiang CHEN ; Tao YU ; Shiyu YANG ; Tao ZENG ; Lan WEI ; Yan ZHANG
China Oncology 2024;34(2):176-184
Background and purpose:Exogenous bone morphogenetic protein 9(BMP9)inhibits the malignant progression of human breast cancer,but its expression is often abnormally low in breast cancer.In this study,we intended to explore the expression and role of epigenetically-modified histone lysine-specific demethylase 4A(KDM4A)in breast cancer,and to investigate the relationship between KDM4A and BMP9 and its possible regulatory mechanism.Methods:The expression of KDM4A in breast cancer and its relationship with BMP9 were analyzed by bioinformatics and verified by real-time fluorescence quantitative polymerase chain reaction(RTFQ-PCR)and Western blot.Chromatin immunoprecipitation(ChIP)verified the regulatory role of KDM4A on BMP9,and RNA stability experiments and CHX protein stability experiments verified the effect of KDM4A in BMP9 expression.Exogenous recombinant MDA-MB-231 cells transfected with KDM4A small interfering RNA(siKDM4A)or infected with siBMP9 adenovirus(Ad-siBMP9)were constructed using RNA interference technology and adenoviruses knocking down BMP9,and the migratory and invasive abilities of the cells were detected by scratch healing assay and transwell assay,respectively.Results:Bioinformatics analysis showed that the expression of KDM4A was significantly higher in breast cancer than in normal tissues,and there was a negative correlation between the expression of KDM4A and that of BMP9 in breast cancer;RTFQ-PCR and Western blot showed that KDM4A was highly expressed in different breast cancer cell lines,and the knockdown of KDM4A significantly up-regulated BMP9.ChIP experiment confirmed that KDM4A could be significantly enriched in the promoter region of BMP9 gene,reducing its histone lysine 36 position instead of position 4 methyl status,thus silencing the expression of BMP9.RNA stability assay and CHX protein stability assay confirmed that KDM4A had no significant effect on the mRNA of BMP9,but could affect its protein degradation.After knocking down KDM4A,the migration and invasion abilities of breast cancer cells MDA-MB-231 were significantly inhibited,and this effect could be partially reversed by knocking down BMP9.Conclusion:KDM4A is highly expressed in breast cancer and breast cancer cell MDA-MB-231,and can silence its expression by down-regulating the level of histone methylation in the promoter region of the BMP9 gene,as well as affecting the stability of BMP9 at the protein level rather than at the level of mRNA,and promoting the migration and invasion of breast cancer.
10.Relationship between maternal arsenic exposure during pregnancy and congenital heart disease in offspring: A meta-analysis
Lan LAN ; Huai HU ; Nan JING ; Qianlei YANG ; Hailin TIAN ; Yan AN
Chinese Journal of Endemiology 2024;43(3):247-252
Objective:To systematically evaluate the correlation between maternal arsenic exposure during pregnancy and congenital heart disease (CHD) in offspring.Methods:Literature search was performed through databases such as PubMed, Web of Science, Embase, China National Knowledge Infrastructure, Wanfang Data Knowledge Service Platform, and VIP.com to include epidemiological literature on association between maternal arsenic exposure during pregnancy and offspring CHD published domestically and internationally. The search was conducted from database establishment until November 2, 2022. Stata MP15 software was used for meta-analysis of binary variables, and I 2 statistics and Q test were used for heterogeneity test, fixed effect model or random effect model was selected based on the test results. Using OR value (95% CI) as the effect evaluation indicator, subgroup analysis was conducted based on CHD subtypes [conotruncal defects (CTD), atrioventricular septal defect (AVSD), total anomalous pulmonary venous return (TAPVR), left ventricular outflow tract obstruction (LVOTO), right ventricular outflow tract obstruction (RVOTO), atrial septal defect (ASD)/ventricular septal defect (VSD), and patent ductus arteriosus (PDA)]. Results:Nine articles were finally included, including two Chinese and seven English articles. Among them, 8 articles had CHD as the outcome, 5 articles had ASD/VSD as the outcome, 4 articles had CTD as the outcome, 3 articles had LVOTO as the outcome, 2 articles had PDA as the outcome, and 1 article had RVOTO as the outcome. An analysis was conducted on 8 articles with CHD as the outcome. After heterogeneity testing, I 2 = 88.5% and P < 0.001, indicating significant heterogeneity. A random effect model was used for meta-analysis, and the combined OR value (95% CI) was 1.51 (1.40 - 1.62). The results of CHD subgroup analysis showed that the combined OR values (95% CI) for ASD/VSD, CTD, LVOTO, PDA, and RVOTO were 1.68 (1.53 - 1.84), 1.64 (1.29 - 2.09), 2.89 (1.82 - 4.61), 1.78 (1.53 - 2.08), and 0.81 (0.64 - 1.03), respectively. Conclusion:Maternal arsenic exposure during pregnancy is associated with development of offspring CHD, including ASD/VSD, CTD, LVOTO, and PDA as the common lesions in offspring CHD.

Result Analysis
Print
Save
E-mail