1.Quality Evaluation of Naomaili Granules Based on Multi-component Content Determination and Fingerprint and Screening of Its Anti-neuroinflammatory Substance Basis
Ya WANG ; Yanan KANG ; Bo LIU ; Zimo WANG ; Xuan ZHANG ; Wei LAN ; Wen ZHANG ; Lu YANG ; Yi SUN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):170-178
ObjectiveTo establish an ultra-performance liquid fingerprint and multi-components determination method for Naomaili granules. To evaluate the quality of different batches by chemometrics, and the anti-neuroinflammatory effects of water extract and main components of Naomaili granules were tested in vitro. MethodsThe similarity and common peaks of 27 batches of Naomaili granules were evaluated by using Ultra performance liquid chromatography (UPLC) fingerprint detection. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology was used to determine the content of the index components in Naomaili granules and to evaluate the quality of different batches of Naomaili granules by chemometrics. LPS-induced BV-2 cell inflammation model was used to investigate the anti-neuroinflammatory effects of the water extract and main components of Naomaili granules. ResultsThe similarity of fingerprints of 27 batches of samples was > 0.90. A total of 32 common peaks were calibrated, and 23 of them were identified and assigned. In 27 batches of Naomaili granules, the mass fractions of 14 components that were stachydrine hydrochloride, leonurine hydrochloride, calycosin-7-O-glucoside, calycosin,tanshinoneⅠ, cryptotanshinone, tanshinoneⅡA, ginsenoside Rb1, notoginsenoside R1, ginsenoside Rg1, paeoniflorin, albiflorin, lactiflorin, and salvianolic acid B were found to be 2.902-3.498, 0.233-0.343, 0.111-0.301, 0.07-0.152, 0.136-0.228, 0.195-0.390, 0.324-0.482, 1.056-1.435, 0.271-0.397, 1.318-1.649, 3.038-4.059, 2.263-3.455, 0.152-0.232, 2.931-3.991 mg∙g-1, respectively. Multivariate statistical analysis showed that paeoniflorin, ginsenoside Rg1, ginsenoside Rb1 and staphylline hydrochloride were quality difference markers to control the stability of the preparation. The results of bioactive experiment showed that the water extract of Naomaili granules and the eight main components with high content in the prescription had a dose-dependent inhibitory effect on the release of NO in the cell supernatant. Among them, salvianolic acid B and ginsenoside Rb1 had strong anti-inflammatory activity, with IC50 values of (36.11±0.15) mg∙L-1 and (27.24±0.54) mg∙L-1, respectively. ConclusionThe quality evaluation method of Naomaili granules established in this study was accurate and reproducible. Four quality difference markers were screened out, and eight key pharmacodynamic substances of Naomaili granules against neuroinflammation were screened out by in vitro cell experiments.
2.Huoluo Xiaolingdan Suppresses Triple-negative Breast Cancer in Mice by Regulating TCF1+ CD8+ Stem Cell-like T Cells Infiltration
Bo LUO ; Qu ZHANG ; Yujie SUN ; Lin LIU ; Lan ZENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):108-115
ObjectiveTo investigate the inhibitory effect of Huoluo Xiaolingdan on triple negative breast cancer (TNBC) in mice through its regulation of TCF1+CD8+ stem cell-like T cells infiltration. MethodsA mouse model of TNBC was established and the mice were randomly divided into the model group, low-dose (3.9 g·kg-1), medium-dose (7.8 g·kg-1) and high-dose (15.6 g·kg-1) Huoluo Xiaolingdan groups, and anti-PD-1 antibody treatment group. Each group was given a dose of 0.01 mL·g-1, while the model group and the anti-PD-1 treatment group were also given an equivalent volume of normal saline. The drug was administered for 21 days. In the anti-PD-1 antibody group, mice were intraperitoneally injected with 100 μg of mouse anti-PD-1 antibody twice a week, for a total of five injections. The tumor volume, survival time and tumor mass were measured at different time points. Hematoxylin-eosin (HE) staining was used to observe the histological changes of the tumor. The expression of CD8+T cells and TCF1+CD8+ stem-like T cells in tumor tissues was detected by immunohistochemistry and immunofluorescence staining. Flow cytometry was used to detect the difference of immune cell subsets in tumors and the expression difference of TCF1+CD8+ stem cell-like T cells in tumors and peripheral blood. The expression level of PD-L1 in tumor tissues was detected by Western blot. ResultsCompared with model group, the tumor volume and mass of in low-, medium- and high-dose Huoluo Xiaolingdan groups and anti-PD-1 group were decreased (P<0.05, P<0.01). The median survival time of mice in low-, medium- and high-dose Huoluo Xiaolingdan groups and anti-PD-1 group was as follows: 27.00 days (95%CI, 0.45-2.65), 31.00 days (95%CI, 0.32-1.89), 34.00 days (95%CI, 0.40-2.33), and 35.00 days (95%CI, 0.42-2.47). All of them were higher than that of the model group [24.50 days (95%CI, 0.37-10.5)]. Flow cytometry showed that compared with the model group, the proportion and number of infiltrating CD8+ T cells in tumor were increased in low-, medium- and high-dose Huoluo Xiaolingdan groups and anti-PD-1 group (P<0.05, P<0.01), while the proportion of tumor regulatory T cells (Treg) and M2 macrophages decreased (P<0.05). Compared with the model group, the proportion of IFN-γ+CD8+ T and GrzB+CD8+ T cells in tumors in low-, medium- and high-dose Huoluo Xiaolingdan groups and anti-PD-1 group was increased (P<0.01), and the proportion of TCF1+CD8+ T cells in tumor and peripheral blood was also increased. Immunofluorescence staining further showed that the number of TCF1+CD8+ T cells in tumor tissues increased in low-, medium- and high-dose Huoluo Xiaolingdan groups. Western blot analysis showed no significant decrease in the PD-L1 protein expression in tumor tissues between the Huoluo Xiaolingdan groups and the model group. ConclusionHuoluo Xiaolingdan can inhibit TNBC in mice by increasing tumor infiltration of TCF1+CD8+ stem-like T cells, enhancing CD8+ T cell activity, and regulating immune cell subgroups such as M2 macrophages and Treg cells to enhance anti-tumor immunity. This study provides a theoretical basis for the clinical application of Huoluo Xiaolingdan in breast cancer treatment and combination therapy.
3.The effects and mechanisms of silica on alveolar epithelial cell apoptosis
Yali LAN ; Wenyao SU ; Zhiming HU ; Ping WANG ; Bizhu ZHANG ; Na ZHAO
China Occupational Medicine 2025;52(1):10-16
Objective To investigate the effects and mechanisms of silica dust on the apoptosis of alveolar epithelial cell (AEC) through in vitro and animal experiments. Methods i) In vitro experiment. A549 cells were stimulated with 100 mg/L silica suspension for 0, 12, 24 and 48 hours. The cell apoptosis rate was detected by flow cytometry. ii) Animal experiment. Specific pathogen-free male C57BL/6 mice were randomly divided into control, 14-day, 28-day, and 56-day groups, with five mice in each group. The mice in the control group were sacrificed at 56 days after being treated with 40.0 μL 0.9% sodium chloride solution, and the mice in the last three groups were sacrificed at 14, 28 and 56 days after being treated with 40.0 μL silica suspension with a mass concentration of 125 g/L via tracheal exposure method. The lung tissues of mice were collected to measure lung organ coefficients. Masson staining was used to detect the degree of pulmonary fibrosis, and Ashcroft scores were evaluated. The apoptosis of AEC in mice was observed by TUNEL immunofluorescence assay. iii) The mRNA relative expression of apoptosis-related genes in A549 cells and mouse lung tissue was detected using reverse transcription and real-time fluorescence quantitative polymerase chain reaction. Results i) In vitro experiment. The apoptosis rate of A549 cells increased with longer silica exposure (all P<0.05). The relative expression of B cell lymphoma-2 (BCL-2) mRNA in A549 cells in 24 h group and 48 h group decreased (both P<0.05), and the relative expression of BCL-2 associated X protein (BAX) mRNA increased (both P<0.05), compared with 0 h group. The mRNA relative expression of caspase (CASP) -3 and CASP-9 in A549 cells increased with longer silica exposure (all P<0.05). ii) Animal experiment. The lung organ coefficients and Ashcroft score in mice progressively increased (all P<0.05), the degree of pulmonary fibrosis was gradually aggravated, and TUNEL positive cells in lung tissue were gradually increased, while Bax, Casp-3 and Casp-9 mRNA relative expression increased with longer silica exposure (all P<0.05). Conclusion Silica dust may cause pulmonary fibrosis by inducing apoptosis of AEC, with a time-dependent effect. The mechanism may be related to the effect of silica dust on mitochondrial apoptosis through Bcl-2/Bax/Caspase-3 signaling pathway.
4.Introduction and enlightenment of the Recommendations and Expert Consensus for Plasm a and Platelet Transfusion Practice in Critically ill Children: from the Transfusion and Anemia Expertise Initiative-Control/Avoidance of Bleeding (TAXI-CAB)
Lu LU ; Jiaohui ZENG ; Hao TANG ; Lan GU ; Junhua ZHANG ; Zhi LIN ; Dan WANG ; Mingyi ZHAO ; Minghua YANG ; Rong HUANG ; Rong GUI
Chinese Journal of Blood Transfusion 2025;38(4):585-594
To guide transfusion practice in critically ill children who often need plasma and platelet transfusions, the Transfusion and Anemia Expertise Initiative-Control/Avoidance of Bleeding (TAXI-CAB) developed Recommendations and Expert Consensus for Plasma and Platelet Transfusion Practice in Critically Ill Children. This guideline addresses 53 recommendations related to plasma and platelet transfusion in critically ill children with 8 kinds of diseases, laboratory testing, selection/treatment of plasma and platelet components, and research priorities. This paper introduces the specific methods and results of the recommendation formation of the guideline.
5.Effect of mild hypercapnia during the recovery period on the emergence time from total intravenous anesthesia: a randomized controlled trial
Lan LIU ; Xiangde CHEN ; Qingjuan CHEN ; Xiuyi LU ; Lili FANG ; Jinxuan REN ; Yue MING ; Dawei SUN ; Pei CHEN ; Weidong WU ; Lina YU
Korean Journal of Anesthesiology 2025;78(3):215-223
Background:
Intraoperative hypercapnia reduces the time to emergence from volatile anesthetics, but few clinical studies have explored the effect of hypercapnia on the emergence time from intravenous (IV) anesthesia. We investigated the effect of inducing mild hypercapnia during the recovery period on the emergence time after total IV anesthesia (TIVA).
Methods:
Adult patients undergoing transurethral lithotripsy under TIVA were randomly allocated to normocapnia group (end-tidal carbon dioxide [ETCO2] 35–40 mmHg) or mild hypercapnia group (ETCO2 50-55 mmHg) during the recovery period. The primary outcome was the extubation time. The spontaneous breathing-onset time, voluntary eye-opening time, and hemodynamic data were collected. Changes in the cerebral blood flow velocity in the middle cerebral artery were assessed using transcranial Doppler ultrasound.
Results:
In total, 164 patients completed the study. The extubation time was significantly shorter in the mild hypercapnia (13.9 ± 5.9 min, P = 0.024) than in the normocapnia group (16.3 ± 7.6 min). A similar reduction was observed in spontaneous breathing-onset time (P = 0.021) and voluntary eye-opening time (P = 0.008). Multiple linear regression analysis revealed that the adjusted ETCO2 level was a negative predictor of extubation time. Middle cerebral artery blood flow velocity was significantly increased after ETCO2 adjustment for mild hypercapnia, which rapidly returned to baseline, without any adverse reactions, within 20 min after extubation.
Conclusions
Mild hypercapnia during the recovery period significantly reduces the extubation time after TIVA. Increased ETCO2 levels can potentially enhance rapid recovery from IV anesthesia.
6.Effect of mild hypercapnia during the recovery period on the emergence time from total intravenous anesthesia: a randomized controlled trial
Lan LIU ; Xiangde CHEN ; Qingjuan CHEN ; Xiuyi LU ; Lili FANG ; Jinxuan REN ; Yue MING ; Dawei SUN ; Pei CHEN ; Weidong WU ; Lina YU
Korean Journal of Anesthesiology 2025;78(3):215-223
Background:
Intraoperative hypercapnia reduces the time to emergence from volatile anesthetics, but few clinical studies have explored the effect of hypercapnia on the emergence time from intravenous (IV) anesthesia. We investigated the effect of inducing mild hypercapnia during the recovery period on the emergence time after total IV anesthesia (TIVA).
Methods:
Adult patients undergoing transurethral lithotripsy under TIVA were randomly allocated to normocapnia group (end-tidal carbon dioxide [ETCO2] 35–40 mmHg) or mild hypercapnia group (ETCO2 50-55 mmHg) during the recovery period. The primary outcome was the extubation time. The spontaneous breathing-onset time, voluntary eye-opening time, and hemodynamic data were collected. Changes in the cerebral blood flow velocity in the middle cerebral artery were assessed using transcranial Doppler ultrasound.
Results:
In total, 164 patients completed the study. The extubation time was significantly shorter in the mild hypercapnia (13.9 ± 5.9 min, P = 0.024) than in the normocapnia group (16.3 ± 7.6 min). A similar reduction was observed in spontaneous breathing-onset time (P = 0.021) and voluntary eye-opening time (P = 0.008). Multiple linear regression analysis revealed that the adjusted ETCO2 level was a negative predictor of extubation time. Middle cerebral artery blood flow velocity was significantly increased after ETCO2 adjustment for mild hypercapnia, which rapidly returned to baseline, without any adverse reactions, within 20 min after extubation.
Conclusions
Mild hypercapnia during the recovery period significantly reduces the extubation time after TIVA. Increased ETCO2 levels can potentially enhance rapid recovery from IV anesthesia.
7.Effect of mild hypercapnia during the recovery period on the emergence time from total intravenous anesthesia: a randomized controlled trial
Lan LIU ; Xiangde CHEN ; Qingjuan CHEN ; Xiuyi LU ; Lili FANG ; Jinxuan REN ; Yue MING ; Dawei SUN ; Pei CHEN ; Weidong WU ; Lina YU
Korean Journal of Anesthesiology 2025;78(3):215-223
Background:
Intraoperative hypercapnia reduces the time to emergence from volatile anesthetics, but few clinical studies have explored the effect of hypercapnia on the emergence time from intravenous (IV) anesthesia. We investigated the effect of inducing mild hypercapnia during the recovery period on the emergence time after total IV anesthesia (TIVA).
Methods:
Adult patients undergoing transurethral lithotripsy under TIVA were randomly allocated to normocapnia group (end-tidal carbon dioxide [ETCO2] 35–40 mmHg) or mild hypercapnia group (ETCO2 50-55 mmHg) during the recovery period. The primary outcome was the extubation time. The spontaneous breathing-onset time, voluntary eye-opening time, and hemodynamic data were collected. Changes in the cerebral blood flow velocity in the middle cerebral artery were assessed using transcranial Doppler ultrasound.
Results:
In total, 164 patients completed the study. The extubation time was significantly shorter in the mild hypercapnia (13.9 ± 5.9 min, P = 0.024) than in the normocapnia group (16.3 ± 7.6 min). A similar reduction was observed in spontaneous breathing-onset time (P = 0.021) and voluntary eye-opening time (P = 0.008). Multiple linear regression analysis revealed that the adjusted ETCO2 level was a negative predictor of extubation time. Middle cerebral artery blood flow velocity was significantly increased after ETCO2 adjustment for mild hypercapnia, which rapidly returned to baseline, without any adverse reactions, within 20 min after extubation.
Conclusions
Mild hypercapnia during the recovery period significantly reduces the extubation time after TIVA. Increased ETCO2 levels can potentially enhance rapid recovery from IV anesthesia.
8.Effect of mild hypercapnia during the recovery period on the emergence time from total intravenous anesthesia: a randomized controlled trial
Lan LIU ; Xiangde CHEN ; Qingjuan CHEN ; Xiuyi LU ; Lili FANG ; Jinxuan REN ; Yue MING ; Dawei SUN ; Pei CHEN ; Weidong WU ; Lina YU
Korean Journal of Anesthesiology 2025;78(3):215-223
Background:
Intraoperative hypercapnia reduces the time to emergence from volatile anesthetics, but few clinical studies have explored the effect of hypercapnia on the emergence time from intravenous (IV) anesthesia. We investigated the effect of inducing mild hypercapnia during the recovery period on the emergence time after total IV anesthesia (TIVA).
Methods:
Adult patients undergoing transurethral lithotripsy under TIVA were randomly allocated to normocapnia group (end-tidal carbon dioxide [ETCO2] 35–40 mmHg) or mild hypercapnia group (ETCO2 50-55 mmHg) during the recovery period. The primary outcome was the extubation time. The spontaneous breathing-onset time, voluntary eye-opening time, and hemodynamic data were collected. Changes in the cerebral blood flow velocity in the middle cerebral artery were assessed using transcranial Doppler ultrasound.
Results:
In total, 164 patients completed the study. The extubation time was significantly shorter in the mild hypercapnia (13.9 ± 5.9 min, P = 0.024) than in the normocapnia group (16.3 ± 7.6 min). A similar reduction was observed in spontaneous breathing-onset time (P = 0.021) and voluntary eye-opening time (P = 0.008). Multiple linear regression analysis revealed that the adjusted ETCO2 level was a negative predictor of extubation time. Middle cerebral artery blood flow velocity was significantly increased after ETCO2 adjustment for mild hypercapnia, which rapidly returned to baseline, without any adverse reactions, within 20 min after extubation.
Conclusions
Mild hypercapnia during the recovery period significantly reduces the extubation time after TIVA. Increased ETCO2 levels can potentially enhance rapid recovery from IV anesthesia.
9.Research progress on mechanism of traditional Chinese medicine in improving myocardial ischemia-reperfusion injury by mitochondrial quality control
Gaojing ZHANG ; Zhiyu YUAN ; Xincan LIU ; Tianfu SUN ; Zhenzhen LAN
China Pharmacy 2025;36(12):1542-1546
Myocardial ischemia-reperfusion injury (MIRI) is a common cardiac pathological process, resulting from the combined effects of multiple mechanisms involving metabolic changes and mitochondrial dysfunction. Mitochondrial quality control (MQC), as a key regulatory mechanism, may serve as an important target for the prevention and treatment of MIRI. In recent years, traditional Chinese medicine (TCM) has demonstrated unique advantages in the field of improving MIRI, with multiple targets, multiple pathways, and low toxic and side effects. It has gained widespread clinical recognition and application. Through systematically organizing and summarizing recent studies on the targeting of MQC by monomers, active fractions, herb pairs, compound formulas and related preparations of TCM to improve MIRI, this paper finds that monomers and active fractions of TCM (such as schisandrin B, isoliquiritigenin, calenduloside E, berberine, Lycium barbarum polysaccharides and so on) as well as TCM herb pairs, compound formulas, and related preparations (couplet medicinals of Fuzi-Ganjiang, Yixin formula, Shuangshen ningxin capsule, Baijin formula, Yiqi huoxue decoction and so on), can alleviate MIRI by activating MQC to reduce oxidative stress-induced damage, promote mitochondrial biogenesis, maintain mitochondrial fission/fusion homeostasis, regulate mitochondrial autophagy, and restore mitochondrial calcium homeostasis.
10.Determination method of clopidogrel and its metabolites in rat plasma and its pharmacokinetic study
Huan YI ; Lan MIAO ; Changying REN ; Li LIN ; Mingqian SUN ; Qing PENG ; Ying ZHANG ; Jianxun LIU
China Pharmacy 2025;36(13):1599-1603
OBJECTIVE To establish a method for determining the contents of clopidogrel (CLP), clopidogrel carboxylate (CLP-C), clopidogrel acyl-β-D-glucuronide (CLP-G) and contents of clopidogrel active metabolite (CAM) in rat plasma, and to investigate their in vivo pharmacokinetic characteristics. METHODS The Shisedo CAPCELL ADME column was used with a mobile phase consisting of water and acetonitrile (both containing 0.1% formic acid) in a gradient elution. The flow rate was 0.4 mL/min, and the column temperature was maintained at 20 ℃. The injection volume was 2 μL. The analysis was performed in positive ion mode using electrospray ionization with multiple reaction monitoring. The ion pairs for quantitative analysis were m/z 322.1→211.9 (for CLP), m/z 308.1→197.9 (for CLP-C), m/z 322.1→154.8 (for CLP-G), m/z 504.1→154.9 [for racemic CAM derivative (CAMD)]. Six rats were administered a single intragastric dose of CLP (10 mg/kg). Blood samples were collected before medication and at 0.08, 0.33, 0.66, 1, 2, 4, 6, 10, 23 and 35 hours after medication. The established method was used to detect the serum contents of various components in rats. Pharmacokinetic parameters were then calculated using WinNonlin 6.1 software. RESULTS The linear ranges for CLP, CLP-C and CAMD were 0.08-20.00, 205.00-8 000.00, and 0.04-25.00 ng/mL, respectively (r≥0.990). The relative standard deviations for both intra-day and inter-day precision tests were all less than 15%, and the relative errors for accuracy ranged from -11.68% to 14.40%. The coefficients of variation for the matrix factors were all less than 15%, meeting the requirements for bioanalytical method validation. The results of the pharmacokinetic study revealed that, following a single intagastric administration of CLP in rats, the exposure to the parent CLP in plasma was extremely low. Both the area under the drug concentration-time curve (AUC0-35 h) and the peak concentration of the parent CLP were lower than those of its metabolites. The AUC0-35 h of the active metabolite CAM was approximately 43 times that of CLP, though it had a shorter half-life (2.53 h). The inactive metabolite CLP-C exhibited the highest exposure level, but it reached its peak concentration the latest and was eliminated slowly. The AUC0-35 h of CLP-G was about four times that of CAM, and its half-life was similar to that of CLP-C. CONCLUSIONS This study successfully established an liquid chromatography-tandem mass spectrometry method for the determination of CLP and its three metabolites, and revealed their pharmacokinetic characteristics in rats. Specifically, the parent drug CLP was rapidly eliminated, while the inactive metabolites CLP-C and CLP-G exhibited long half-lives, and active metabolite CAM displayed a transient exposure pattern.

Result Analysis
Print
Save
E-mail