1.Lactobacillus plantarum ZG03 alleviates oxidative stress via its metabolites short-chain fatty acids.
Shuxian LIN ; Lina GUO ; Yan MA ; Yao XIONG ; Yingxi HE ; Xinzhu XU ; Wen SHENG ; Suhua XU ; Feng QIU
Journal of Southern Medical University 2025;45(10):2223-2230
OBJECTIVES:
To investigate the efficacy of Lactobacillus plantarum ZG03 (L. plantarum ZG03) for ameliorating oxidative stress in zebrafish.
METHODS:
We evaluated the growth pattern of L. plantarum ZG03, observed its morphology using field emission scanning electron microscopy, and assessed its safety and potential efficacy with whole-genome sequencing for genetic analysis. FITC-labeled ZG03 was used to observe its intestinal colonization in zebrafish. In a zebrafish model of 2% glucose-induced oxidative stress, the effect of ZG03 was evaluated by assessing the changes in neutrophils in the caudal hematopoietic tissue (CHT), superoxide dismutase (SOD) activity, reactive oxygen species (ROS) levels, and malondialdehyde (MDA) content. Liquid chromatography-mass spectrometry-based targeted metabolomics was used for analyzing short-chain fatty acids (SCFAs) in the zebrafish, and the antioxidant effects of the key metabolites (acetate, propionate, and caproate) were tested.
RESULTS:
On MRS agar, L. plantarum ZG03 formed circular, smooth, moist, and milky-white colonies with a rod-shaped cell morphology. Genomic analysis revealed abundant sugar metabolism gene clusters. After inoculation of FITC-labeled L. plantarum ZG03 in zebrafish, green fluorescence was clearly observed in the intestinal bulb, mid-intestine, and hind intestine. In zebrafish with glucose-induced oxidative stress, L. plantarum ZG03 significantly reduced ROS levels and the number of neutrophils in the CHT with increased SOD activity. L.plantarum ZG03 significantly increased the content of SCFAs including acetic acid, propionic acid, and caproic acid in zebrafish metabolites. In addition, sodium acetate, sodium propionate, and sodium caproate in the SCFAs significantly increased SOD activity in the zebrafish models.
CONCLUSIONS
L. plantarum ZG03 ameliorates oxidative stress in a glucose-induced zebrafish model through its metabolites, particularly the SCFAs including acetic acid, propionic acid and caproic acid.
Animals
;
Zebrafish/metabolism*
;
Oxidative Stress
;
Lactobacillus plantarum/metabolism*
;
Fatty Acids, Volatile/metabolism*
;
Probiotics
;
Reactive Oxygen Species/metabolism*
;
Superoxide Dismutase/metabolism*
2.Construction of an engineered probiotic strain for efficiently delivering chemokine CXCL12 and application of the strain in diabetic chronic wound healing.
Shengjie LI ; Huijuan SU ; Xiaoting LI ; Jing WEI ; Tingtao CHEN
Chinese Journal of Biotechnology 2025;41(6):2334-2348
Diabetic chronic wounds are characterized by difficult healing, recurrent progression, and high rates of disability and mortality, which make their clinical treatment a medical challenge urgent to be addressed. However, the complex local microenvironment conditions of chronic wounds, such as high protease activity and persistent inflammatory responses, result in low bioavailability of exogenous cytokines (e.g., chemokine CXCL12) at the wound site, limiting their clinical application. In this study, we utilized Lactobacillus plantarum WCFS1 as the chassis to develop an efficient CXCL12 delivery system based on synthetic biology. Subsequently, we evaluated the role of the engineered probiotic strain in promoting the chronic wound healing in diabetic mice. Firstly, we fused the endogenous secretion signal peptide lp_3050 (SPlp_3050) of L. plantarum WCFS1 and the commonly used secretion signal peptide usp45 (SPusp45) of lactic acid bacteria with the reporter gene gusA and inserted them into the pTRK892-P32(pgm) plasmid by molecular cloning. Then, we prepared the engineered strains and characterized the efficacy of the two signal peptides in driving the secretion of GusA. The results showed that SPlp_3050 efficiently drove the secretion of GusA in L. plantarum WCFS1, increasing the activity of GusA in the culture supernatant by nearly five times compared with that of SPlp_3050. Further, we fused SPlp_3050 and codon-optimized CXCL12 gene to construct an engineered probiotic strain Lpw-CXCL12 for CXCL12 delivery. The results demonstrated that the content of CXCL12 in the culture supernatant reached (13.40±0.20) μg/mL. Finally, we found that the engineered probiotic strain Lpw-CXCL12 accelerated chronic wound healing in a diabetic mouse model. In conclusion, these results support an engineered probiotic strain in promoting diabetic chronic wound healing, providing a new strategy and technological foundation for the management of diabetic chronic wounds in the future.
Probiotics
;
Animals
;
Chemokine CXCL12/biosynthesis*
;
Mice
;
Wound Healing
;
Lactobacillus plantarum/metabolism*
;
Diabetes Mellitus, Experimental/complications*
;
Male
3.Characterization of plantaricin IIA-1A5 biosynthesized by Lactobacillus plantarum IIA-1A5 in corn steep liquor based medium
Tuti Rostianti Maulani ; Betty Sri Laksmi Jenie ; Irma Isnafia Arief ; Sukarno Sukarno
Malaysian Journal of Microbiology 2021;17(3):313-320
Aims:
To characterize the plantaricin IIA-1A5 crude extract that biosynthesized by Lactobacillus plantarum IIA-1A5
using corn steep liquor (CSL) based medium.
Methodology and results:
Lactobacillus plantarum IIA-1A5 was grown in several media containing different components including corn steep liquor (CSL), molasses and MRS (de Man Rogosa Sharpe) as control medium for 24 h at 37 °C. Antibacterial activities of the cell-free supernatant were expressed as diameter of inhibition zones observed by paper disc method. The results showed that CSL medium produced cell-free supernatant of L. plantarum IIA-1A5 with significantly higher antibacterial activity againts Staphylococcus aureus ATCC 25923 (9.81 mm), Lactobacillus monocytogenes ATCC 7644 (9.61 mm), Bacillus cereus (8.97 mm) and Escherichia coli ATCC 25922 (9.23 mm) were not significantly different compared to control MRS broth media (9.59 mm). CSL medium added only with 3% yeast extract and Tween 80 produced supernatant which showed similar antibacterial activity either to 10% molasses or control medium (Medium K and B). The CSL medium was considered more efficient and low cost, therefore this medium was selected for production and characterization of plantaricin IIA-1A5 crude extract. Further characterization performed by SDS PAGE analysis showed that crude plantaricin had molecular weight of approximately 9.9 kDa, higher than that produced in control medium (8.0 kDa). However, both plantaricins were categorized under the same class for small bacteriocin (class II). This study also revealed the plantaricin IIA-1A5 produced in CSL medium was stable to heat and pH and not significantly different compared to control MRS broth media. The antibacterial activity of plantaricin IIA-1A5 crude extract against S. aureus ATCC 25923 (10.09 mm) was not significantly different with 1000 ppm sodium benzoate (9.70 mm) and 300 ppm sodium nitrite (9.82 mm).
Conclusion, significance and impact of study
The CSL medium produced cell-free supernatant of L. plantarum IIA 1A5 had significant antibacterial activity characterization againts S. aureus ATCC 25923, L. monocytogenes ATCC 7644, B. cereus and E. coli ATCC 25922. Comparison of the inhibition activity of plantaricin IIA-1A5 crude extract against pathogen with synthetic preservatives indicated that plantaricin IIA-1A5 crude extract have the potency to replace synthetic preservatives. CSL based medium is potential to be used for low-cost plantaricin IIA-1A5 production.
Anti-Bacterial Agents--metabolism
;
Bacteriocins--metabolism
;
Lactobacillus plantarum
;
Microbial Viability--drug effects
;
Staphylococcus aureus
4.Supplementation of Fermented Barley Extracts with Lactobacillus Plantarum dy-1 Inhibits Obesity via a UCP1-dependent Mechanism.
Xiang XIAO ; Juan BAI ; Ming Song LI ; Jia Yan ZHANG ; Xin Juan SUN ; Ying DONG
Biomedical and Environmental Sciences 2019;32(8):578-591
OBJECTIVE:
We aimed to explore how fermented barley extracts with Lactobacillus plantarum dy-1 (LFBE) affected the browning in adipocytes and obese rats.
METHODS:
In vitro, 3T3-L1 cells were induced by LFBE, raw barley extraction (RBE) and polyphenol compounds (PC) from LFBE to evaluate the adipocyte differentiation. In vivo, obese SD rats induced by high fat diet (HFD) were randomly divided into three groups treated with oral gavage: (a) normal control diet with distilled water, (b) HFD with distilled water, (c) HFD with 800 mg LFBE/kg body weight (bw).
RESULTS:
In vitro, LFBE and the PC in the extraction significantly inhibited adipogenesis and potentiated browning of 3T3-L1 preadipocytes, rather than RBE. In vivo, we observed remarkable decreases in the body weight, serum lipid levels, white adipose tissue (WAT) weights and cell sizes of brown adipose tissues (BAT) in the LFBE group after 10 weeks. LFBE group could gain more mass of interscapular BAT (IBAT) and promote the dehydrogenase activity in the mitochondria. And LFBE may potentiate process of the IBAT thermogenesis and epididymis adipose tissue (EAT) browning via activating the uncoupling protein 1 (UCP1)-dependent mechanism to suppress the obesity.
CONCLUSION
These results demonstrated that LFBE decreased obesity partly by increasing the BAT mass and the energy expenditure by activating BAT thermogenesis and WAT browning in a UCP1-dependent mechanism.
3T3 Cells
;
Adipocytes
;
drug effects
;
physiology
;
Adipose Tissue, Brown
;
drug effects
;
physiology
;
Adipose Tissue, White
;
drug effects
;
physiology
;
Animal Feed
;
analysis
;
Animals
;
Anti-Obesity Agents
;
administration & dosage
;
metabolism
;
Cell Differentiation
;
drug effects
;
Diet
;
Fermentation
;
Hordeum
;
chemistry
;
Lactobacillus plantarum
;
chemistry
;
Male
;
Mice
;
Obesity
;
drug therapy
;
genetics
;
Plant Extracts
;
chemistry
;
Probiotics
;
administration & dosage
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Uncoupling Protein 1
;
genetics
;
metabolism
5.Antitumor Activities and Apoptosis-regulated Mechanisms of Fermented Barley Extract in the Transplantation Tumor Model of Human HT-29 Cells in Nude Mice.
Fang YAO ; Jia Yan ZHANG ; Xiang XIAO ; Ying DONG ; Xing Hua ZHOU
Biomedical and Environmental Sciences 2017;30(1):10-21
OBJECTIVEA subcutaneous transplantation tumor model of human HT-29 cells was established in nude mice to study the anticarcinogenic activities and apoptosis-regulatory mechanistic effect of aqueous extract of fermented barley with Lactobacillus plantarum dy-1 (LFBE).
METHODSHT-29 cells were transplanted via subcutaneous injection of 1 × 107cells into the right flank of each nude mouse. Then, nude mice were treated for 30 days with LFBE (high-dose 2 g·kg-1·d-1; low-dose 1 g·kg-1·d-1) and for 7 days with 5-fluorouracil (5-FU, 25 g·kg-1·d-1) by gavage and intraperitoneal injection, respectively.
RESULTSTumor volume and weight decreased significantly in both groups of nude mice treated with LFBE. In addition, the cell apoptosis rate of the LFBE group was significantly higher than that of the control group and 5-FU groups as measured by the TUNEL assay. Moreover, the real-time fluorescent quantitative PCR and Western blot methods further confirmed these apoptosis-enhancing and growth-inhibiting effects. The involvement of LFBE in inducing apoptosis was confirmed by the expression of Bax, Bcl-2, caspase-3, and cyclinD1.
CONCLUSIONThe results showed that LFBE could induce subcutaneous transplantation tumor apoptosis in nude mice and could be used as a natural nutrient supplement or chemopreventive agent in the treatment of human colon cancer.
Animals ; Apoptosis ; drug effects ; Caspase 3 ; metabolism ; Cell Proliferation ; drug effects ; Cyclin D1 ; metabolism ; Female ; Fermentation ; HT29 Cells ; Hordeum ; chemistry ; Humans ; Lactobacillus plantarum ; Mice, Nude ; Neoplasm Transplantation ; Neoplasms, Experimental ; drug therapy ; metabolism ; Phytotherapy ; Plant Extracts ; pharmacology ; therapeutic use ; Xenograft Model Antitumor Assays ; bcl-2-Associated X Protein ; metabolism
6.Oral administration of red ginseng powder fermented with probiotic alleviates the severity of dextran-sulfate sodium-induced colitis in a mouse model.
Sun-Hee JANG ; Jisang PARK ; Sae-Hae KIM ; Kyung-Min CHOI ; Eun-Sil KO ; Jeong-Dan CHA ; Young-Ran LEE ; Hyonseok JANG ; Yong-Suk JANG
Chinese Journal of Natural Medicines (English Ed.) 2017;15(3):192-201
Red ginseng is a well-known alternative medicine with anti-inflammatory activity. It exerts pharmacological effects through the transformation of saponin into metabolites by intestinal microbiota. Given that intestinal microflora vary among individuals, the pharmacological effects of red ginseng likely vary among individuals. In order to produce homogeneously effective red ginseng, we prepared probiotic-fermented red ginseng and evaluated its activity using a dextran sulfate sodium (DSS)-induced colitis model in mice. Initial analysis of intestinal damage indicated that the administration of probiotic-fermented red ginseng significantly decreased the severity of colitis, compared with the control and the activity was higher than that induced by oral administration of ginseng powder or probiotics only. Subsequent analysis of the levels of serum IL-6 and TNF-α, inflammatory biomarkers that are increased at the initiation stage of colitis, were significantly decreased in probiotic-fermented red ginseng-treated groups in comparison to the control group. The levels of inflammatory cytokines and mRNAs for inflammatory factors in colorectal tissues were also significantly decreased in probiotic-fermented red ginseng-treated groups. Collectively, oral administration of probiotic-fermented red ginseng reduced the severity of colitis in a mouse model, suggesting that it can be used as a uniformly effective red ginseng product.
Administration, Oral
;
Animals
;
Colitis
;
chemically induced
;
drug therapy
;
immunology
;
Colon
;
drug effects
;
immunology
;
Dextran Sulfate
;
adverse effects
;
Disease Models, Animal
;
Female
;
Fermentation
;
Humans
;
Interleukin-6
;
immunology
;
Lactobacillus plantarum
;
metabolism
;
Mice
;
Mice, Inbred BALB C
;
Panax
;
chemistry
;
metabolism
;
microbiology
;
Plant Extracts
;
administration & dosage
;
chemistry
;
metabolism
;
Powders
;
administration & dosage
;
metabolism
;
Probiotics
;
metabolism
;
Tumor Necrosis Factor-alpha
;
immunology
7.Expression and characterization of porcine epidermal growth factor in Lactobacillus plantarum.
Zemin ZHONG ; Qiang LAI ; Xiyao YU ; Dehui LIU ; Yumao HUANG
Chinese Journal of Biotechnology 2015;31(9):1325-1334
Epidermal growth factor (EGF) is an epithelial cell growth factor that can stimulate intestinal development, repair the damage of epidermal cells as well as reduce the incidence of pathogen infection and diarrhea. In order to produce a recombinant Lactobacillus plantarum (L. plantarum) expressing porcine epidermal growth factor (pEGF), we constructed a recombinant vector stably expressing pEGF in L. plantarum strains. First, L. plantarum strain Lp-1 was isolated from intestinal contents of piglets. Then the functional domain of pEGF, M6 precursor protein signal peptide (SP) and super strong constitutive promoter (SCP) were connected with the backbone plasmid pIAβ8 to construct the recombinant vector that was transformed into Lp-1 by electroporation. Afterwards, pEGF was expressed in Lp-1 and detected by Tricine-SDS-PAGE and ELISA. After orally irrigated early-weaned BALB/c mice with the recombinant L. plantarum every morning and late afternoon for 10 consecutive days, body weight, villous height and crypt depth in the intestine were measured to examine the influence of the recombinant bacteria on the intestinal development of early-weaned mice in vivo. Finally, the results of our experiments demonstrated that pEGF was successfully expressed in Lp-1 and the molecular weight of pEGF was 6 kDa. In addition, the recombinant pEGF can enhanced the daily gain and exerted significance influence (P < 0.05) to the small intestinal morphology of early-weaned BALB/c mice. In conclusion, pEGF could be expressed in L. plantarum and the recombinant pEGF possesses good biological activity.
Animals
;
Electrophoresis, Polyacrylamide Gel
;
Epidermal Growth Factor
;
biosynthesis
;
Genetic Vectors
;
Intestines
;
microbiology
;
Lactobacillus plantarum
;
metabolism
;
Mice
;
Mice, Inbred BALB C
;
Plasmids
;
Promoter Regions, Genetic
;
Protein Precursors
;
Protein Sorting Signals
;
Recombinant Proteins
;
biosynthesis
;
Swine
8.Fermentation transformed ginsenoside by Lactobacillus plantarum.
Yang CHEN ; Yi WANG ; Liang SUN ; Kang-Yu WANG ; Shi-Cui JIANG ; Chun-Yu SUN ; Mei-Ping ZHANG
China Journal of Chinese Materia Medica 2014;39(8):1435-1440
OBJECTIVETo explore ginseng fermentation process by Lactobacillus plantarum, and to make part of total saponins transformed into more reactive ginsenoside Rd.
METHODMicrobial fermentation was carried out by still dark culture. Total saponins were extracted by Soxhlet extraction, and determined by UV visible spectrophotometry with colours reaction by vanillin-sulfuric acid. Ginsenoside Rd was determined by HPLC method.
RESULTThe fermentation process was: MRS medium, 35 degrees C, pH 5.0, cultured for 2 days. The content of total saponins was inhance 32%, and the content of ginsenoside Rd was increased 4.864 mg x g(-1).
CONCLUSIONThe fermentation system's process was reasonable, and it's suitable for mass production, important significance for ginsenoside microbial transformation.
Biotransformation ; Culture Media ; chemistry ; metabolism ; Fermentation ; Ginsenosides ; chemistry ; metabolism ; Hydrogen-Ion Concentration ; Lactobacillus plantarum ; chemistry ; growth & development ; metabolism ; Molecular Structure
9.Construction of a recombinant Escherichia coli BL21/ pET-28a-lpgad and the optimization of transformation conditions for the efficient production of gamma-aminobutyric acid.
Lingzhi TIAN ; Meijuan XU ; Zhiming RAO
Chinese Journal of Biotechnology 2012;28(1):65-75
In order to enhance gamma-aminobutyric acid production from L-glutamate efficiently, we amplified the key enzyme glutamate decarboxylase (GAD) encoding gene lpgad from the strain Lactobacillus plantarum GB 01-21 which was obtained by way of multi-mutagenesis and overexpressed it in E. coli BL21. Then we purified GAD by Ni-NTA affinity chromatography and characterized the enzyme to optimize the conditions of the whole-cell transformation. The results showed that the recombinant E. coli BL21 (pET-28a-lpgad) produced 8.53 U/mg GAD, which was increased by 3.24 fold compared with the GAD activity in L. plantarum. The optimum pH and temperature of the enzyme were pH 4.8 and 37 degrees C, respectively. At the same time, we found that Ca2+ and Mg2+ could increase the activity significantly. Based on this, we investigated gamma-aminobutyric acid transformation in 5 L fermentor under the optimum transformation conditions. Accordingly, the yield of gamma-aminobutyric acid was 204.5 g/L at 24 h when the 600 g L-glutamate was added and the mole conversion rate had reached 97.92%. The production of gamma-aminobutyric acid was improved by 42.5% compared with that under the unoptimized transformation conditions. This paved a way for the gamma-aminobutyric acid construction of the industrial applications.
Cloning, Molecular
;
Escherichia coli
;
enzymology
;
genetics
;
metabolism
;
Glutamate Decarboxylase
;
biosynthesis
;
genetics
;
Glutamic Acid
;
metabolism
;
Lactobacillus plantarum
;
enzymology
;
genetics
;
Recombination, Genetic
;
gamma-Aminobutyric Acid
;
biosynthesis


Result Analysis
Print
Save
E-mail