1.From organoids to organoids-on-a-chip: Current applications and challenges in biomedical research.
Kailun LIU ; Xiaowei CHEN ; Zhen FAN ; Fei REN ; Jing LIU ; Baoyang HU
Chinese Medical Journal 2025;138(7):792-807
The high failure rates in clinical drug development based on animal models highlight the urgent need for more representative human models in biomedical research. In response to this demand, organoids and organ chips were integrated for greater physiological relevance and dynamic, controlled experimental conditions. This innovative platform-the organoids-on-a-chip technology-shows great promise in disease modeling, drug discovery, and personalized medicine, attracting interest from researchers, clinicians, regulatory authorities, and industry stakeholders. This review traces the evolution from organoids to organoids-on-a-chip, driven by the necessity for advanced biological models. We summarize the applications of organoids-on-a-chip in simulating physiological and pathological phenotypes and therapeutic evaluation of this technology. This section highlights how integrating technologies from organ chips, such as microfluidic systems, mechanical stimulation, and sensor integration, optimizes organoid cell types, spatial structure, and physiological functions, thereby expanding their biomedical applications. We conclude by addressing the current challenges in the development of organoids-on-a-chip and offering insights into the prospects. The advancement of organoids-on-a-chip is poised to enhance fidelity, standardization, and scalability. Furthermore, the integration of cutting-edge technologies and interdisciplinary collaborations will be crucial for the progression of organoids-on-a-chip technology.
Organoids/physiology*
;
Humans
;
Biomedical Research/methods*
;
Lab-On-A-Chip Devices
;
Animals
;
Microphysiological Systems
2.Application and Progress of Organoid-on-a-chip Platforms in Lung Cancer Diagnosis and Therapy.
Wuyang YUN ; Xiaoyun ZHANG ; Li XIAO
Chinese Journal of Lung Cancer 2025;28(9):689-699
Lung cancer remains one of the most prevalent and lethal malignancies worldwide. The advancement of its precise diagnosis and therapeutic development urgently requires in vitro models that can highly recapitulate the pathophysiological characteristics of human tissues. Organ-on-a-chip has emerged as a novel technological platform that integrates microfluidic engineering, biomaterials, and other engineering strategies with organoid culture. This platform enables precise control over the cellular microenvironment, thereby closely mimicking the three-dimensional structure and physiological functions of human organs in vitro. Organ-on-a-chip systems demonstrate significant advantages in cancer research, developmental biology, and disease modeling, as they not only preserve the heterogeneity and pathological features of patient samples but also support co-culture of various cell types to reconstruct the tumor microenvironment (TME). However, standardized construction methods and integrated analytical strategies for this technology in lung cancer research remain to be further refined. This review systematically elaborates on the key technical principles of organ-on-a-chip and its recent advances in lung cancer modeling, drug screening, and immunotherapy research. It aims to provide a theoretical foundation and technical perspective for promoting the deeper application of organ-on-a-chip in precision medicine and translational research for lung cancer.
.
Humans
;
Lung Neoplasms/drug therapy*
;
Organoids/drug effects*
;
Lab-On-A-Chip Devices
;
Animals
;
Tumor Microenvironment
3.Design, simulation and application of multichannel microfluidic chip for cell migration.
Huilai LI ; Xiao YANG ; Xiaosong WU ; Zhigang LI ; Chenggang HONG ; Yong LIU ; Ling ZHU ; Ke YANG
Journal of Biomedical Engineering 2022;39(1):128-138
Cell migration is defined as the directional movement of cells toward a specific chemical concentration gradient, which plays a crucial role in embryo development, wound healing and tumor metastasis. However, current research methods showed low flux and are only suitable for single-factor assessment, and it was difficult to comprehensively consider the effects of other parameters such as different concentration gradients on cell migration behavior. In this paper, a four-channel microfluidic chip was designed. Its characteristics were as follows: it relied on laminar flow and diffusion mechanisms to establish and maintain a concentration gradient; it was suitable for observation of cell migration in different concentration gradient environment under a single microscope field; four cell isolation zones (20 μm width) were integrated into the microfluidic device to calibrate the initial cell position, which ensured the accuracy of the experimental results. In particular, we used COMSOL Multiphysics software to simulate the structure of the chip, which demonstrated the necessity of designing S-shaped microchannel and horizontal pressure balance channel to maintain concentration gradient. Finally, neutrophils were incubated with advanced glycation end products (AGEs, 0, 0.2, 0.5, 1.0 μmol·L -1), which were closely related to diabetes mellitus and its complications. The migration behavior of incubated neutrophils was studied in the 100 nmol·L -1 of chemokine (N-formylmethionyl-leucyl-phenyl-alanine) concentration gradient. The results prove the reliability and practicability of the microfluidic chip.
Cell Movement
;
Chemotaxis
;
Equipment Design
;
Lab-On-A-Chip Devices
;
Microfluidic Analytical Techniques
;
Microfluidics
;
Neutrophils
;
Reproducibility of Results
4.Automated microfluidic chip system for radiosynthesis of PET imaging probes.
Ming LEI ; Jian-Zhang PAN ; Guang-Ming XU ; Pei-Zhen DU ; Mei TIAN ; Hong ZHANG
Journal of Zhejiang University. Science. B 2019;20(11):865-867
Positron emission tomography (PET) is a powerful non-invasive molecular imaging technique for the early detection, characterization, and "real-time" monitoring of disease, and for investigating the efficacy of drugs (Phelps, 2000; Ametamey et al., 2008). The development of molecular probes bearing short-lived positron-emitting radionuclides, such as 18F (half-life 110 min) or 11C (half-life 20 min), is crucial for PET imaging to collect in vivo metabolic information in a time-efficient manner (Deng et al., 2019). In this regard, one of the main challenges is rapid synthesis of radiolabeled probes by introducing the radionuclides into pharmaceuticals as soon as possible before injection for a PET scan. Although many potential PET probes have been discovered, only a handful can satisfy the demand for a highly efficient synthesis procedure that achieves radiolabeling and delivery for imaging within 1-2 radioisotope half-lives. Only a few probes, such as 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) and [18F]fluorodopa, are routinely produced on a commercial scale for daily clinical diagnosis (Grayson et al., 2018; Carollo et al., 2019).
Lab-On-A-Chip Devices
;
Positron-Emission Tomography/methods*
;
Radioisotopes/chemistry*
;
Radiopharmaceuticals/chemical synthesis*
;
Solid Phase Extraction
5.Inhibition of the Hedgehog Signaling Pathway Depresses the Cigarette Smoke-Induced Malignant Transformation of 16HBE Cells on a Microfluidic Chip.
Yong-Xin QIN ; Zhi-Hui YANG ; Xiao-Hui DU ; Hui ZHAO ; Yuan-Bin LIU ; Zhe GUO ; Qi WANG
Chinese Medical Journal 2018;131(10):1191-1198
BackgroundThe hedgehog signaling system (HHS) plays an important role in the regulation of cell proliferation and differentiation during the embryonic phases. However, little is known about the involvement of HHS in the malignant transformation of cells. This study aimed to detect the role of HHS in the malignant transformation of human bronchial epithelial (16HBE) cells.
MethodsIn this study, two microfluidic chips were designed to investigate cigarette smoke extract (CSE)-induced malignant transformation of cells. Chip A contained a concentration gradient generator, while chip B had four cell chambers with a central channel. The 16HBE cells cultured in chip A were used to determine the optimal concentration of CSE for inducing malignant transformation. The 16HBE cells in chip B were cultured with 12.25% CSE (Group A), 12.25% CSE + 5 μmol/L cyclopamine (Group B), or normal complete medium as control for 8 months (Group C), to establish the in vitro lung inflammatory-cancer transformation model. The transformed cells were inoculated into 20 nude mice as cells alone (Group 1) or cells with cyclopamine (Group 2) for tumorigenesis testing. Expression of HHS proteins was detected by Western blot. Data were expressed as mean ± standard deviation. The t-test was used for paired samples, and the difference among groups was analyzed using a one-way analysis of variance.
ResultsThe optimal concentration of CSE was 12.25%. Expression of HHS proteins increased during the process of malignant transformation (Group B vs. Group A, F = 7.65, P < 0.05). After CSE exposure for 8 months, there were significant changes in cellular morphology, which allowed the transformed cells to grow into tumors in 40 days after being inoculated into nude mice. Cyclopamine could effectively depress the expression of HHS proteins (Group C vs. Group B, F = 6.47, P < 0.05) and prevent tumor growth in nude mice (Group 2 vs. Group 1, t = 31.59, P < 0.01).
ConclusionsThe activity of HHS is upregulated during the CSE-induced malignant transformation of 16HBE cells. Cyclopamine can effectively depress expression of HHS proteins in vitro and prevent tumor growth of the transformed cells in vivo.
Animals ; Cell Transformation, Neoplastic ; genetics ; metabolism ; Gene Expression Regulation, Neoplastic ; genetics ; physiology ; Hedgehog Proteins ; genetics ; metabolism ; Lab-On-A-Chip Devices ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Microfluidics ; Signal Transduction ; genetics ; physiology ; Smoke ; Smoking ; adverse effects
6.Neural Stem Cell Differentiation Using Microfluidic Device-Generated Growth Factor Gradient.
Ji Hyeon KIM ; Jiyeon SIM ; Hyun Jung KIM
Biomolecules & Therapeutics 2018;26(4):380-388
Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation, migration, differentiation and apoptosis. In an effort to find optimal culture conditions for the generation of desired cell types in vitro, we used a microfluidic chip-generated growth factor gradient system. In the current study, NSCs in the microfluidic device remained healthy during the entire period of cell culture, and proliferated and differentiated in response to the concentration gradient of growth factors (epithermal growth factor and basic fibroblast growth factor). We also showed that overexpression of ASCL1 in NSCs increased neuronal differentiation depending on the concentration gradient of growth factors generated in the microfluidic gradient chip. The microfluidic system allowed us to study concentration-dependent effects of growth factors within a single device, while a traditional system requires multiple independent cultures using fixed growth factor concentrations. Our study suggests that the microfluidic gradient-generating chip is a powerful tool for determining the optimal culture conditions.
Apoptosis
;
Cell Culture Techniques
;
Cell Proliferation
;
Embryonic Development
;
Female
;
Fibroblasts
;
In Vitro Techniques
;
Intercellular Signaling Peptides and Proteins
;
Lab-On-A-Chip Devices
;
Microfluidics*
;
Nervous System
;
Neural Stem Cells*
;
Neurogenesis
;
Neurons
;
Pregnancy
7.Relationship between Pericytes and Endothelial Cells in Retinal Neovascularization: A Histological and Immunofluorescent Study of Retinal Angiogenesis
Se Hyun CHOI ; Minhwan CHUNG ; Sung Wook PARK ; Noo Li JEON ; Jeong Hun KIM ; Young Suk YU
Korean Journal of Ophthalmology 2018;32(1):70-76
PURPOSE: To evaluate the relationship between pericytes and endothelial cells in retinal neovascularization through histological and immunofluorescent studies. METHODS: C57BL/6J mice were exposed to hyperoxia from postnatal day (P) 7 to P12 and were returned to room air at P12 to induce a model of oxygen-induced retinopathy (OIR). The cross sections of enucleated eyes were processed with hematoxylin and eosin. Immunofluorescent staining of pericytes, endothelial cells, and N-cadherin was performed. Microfluidic devices were fabricated out of polydimethylsiloxane using soft lithography and replica molding. Human retinal microvascular endothelial cells, human brain microvascular endothelial cells, human umbilical vein endothelial cells and human placenta pericyte were mixed and co-cultured. RESULTS: Unlike the three-layered vascular plexus found in retinal angiogenesis of a normal mouse, angiogenesis in the OIR model is identified by the neovascular tuft extending into the vitreous. Neovascular tufts and the three-layered vascular plexus were both covered with pericytes in the OIR model. In this pathologic vascularization, N-cadherin, known to be crucial intercellular adhesion molecule, was also present. Further evaluation using the microfluidic in vitro model, successfully developed a microvascular network of endothelial cells covered with pericytes, mimicking normal retinal angiogenesis within 6 days. CONCLUSIONS: Pericytes covering endothelial cells were observed not only in vasculature of normal retina but also pathologic neovascularization of OIR mouse at P17. Factors involved in the endothelial cell-pericyte interaction can be evaluated as an attractive novel treatment target. These future studies can be performed using microfluidic systems, which can shorten the study time and provide three-dimensional structural evaluation.
Animals
;
Brain
;
Cadherins
;
Endothelial Cells
;
Eosine Yellowish-(YS)
;
Fungi
;
Hematoxylin
;
Human Umbilical Vein Endothelial Cells
;
Humans
;
Hyperoxia
;
In Vitro Techniques
;
Lab-On-A-Chip Devices
;
Mice
;
Microfluidics
;
Microvessels
;
Neovascularization, Pathologic
;
Pericytes
;
Placenta
;
Retina
;
Retinal Neovascularization
;
Retinaldehyde
8.Applications of Microfluidic Devices for Urology.
Se Jik HAN ; Hun Kuk PARK ; Kyung Sook KIM
International Neurourology Journal 2017;21(Suppl 1):S4-S9
Microfluidics is considered an important technology that is suitable for numerous biomedical applications, including cancer diagnosis, metastasis, drug delivery, and tissue engineering. Although microfluidics is still considered to be a new approach in urological research, several pioneering studies have been reported in recent years. In this paper, we reviewed urological research works using microfluidic devices. Microfluidic devices were used for the detection of prostate and bladder cancer and the characterization of cancer microenvironments. The potential applications of microfluidics in urinary analysis and sperm sorting were demonstrated. The use of microfluidic devices in urology research can provide high-throughput, high-precision, and low-cost analyzing platforms.
Diagnosis
;
Lab-On-A-Chip Devices*
;
Microfluidics*
;
Neoplasm Metastasis
;
Prostate
;
Prostatic Neoplasms
;
Spermatozoa
;
Tissue Engineering
;
Tumor Microenvironment
;
Urinary Bladder Neoplasms
;
Urology*
9.Flow Shear Stress Enhances the Proliferative Potential of Cultured Radial Glial Cells Possibly Via an Activation of Mechanosensitive Calcium Channel.
Min Gu PARK ; Heeyeong JANG ; Sang Hoon LEE ; C Justin LEE
Experimental Neurobiology 2017;26(2):71-81
Radial glial cells (RGCs) which function as neural stem cells are known to be non-excitable and their proliferation depends on the intracellular calcium (Ca²⁺) level. It has been well established that Inositol 1,4,5-trisphosphate (IP3)-mediated Ca²⁺ release and Ca²⁺ entry through various Ca²⁺ channels are involved in the proliferation of RGCs. Furthermore, RGCs line the ventricular wall and are exposed to a shear stress due to a physical contact with the cerebrospinal fluid (CSF). However, little is known about how the Ca²⁺ entry through mechanosensitive ion channels affects the proliferation of RGCs. Hence, we hypothesized that shear stress due to a flow of CSF boosts the proliferative potential of RGCs possibly via an activation of mechanosensitive Ca²⁺ channel during the embryonic brain development. Here, we developed a new microfluidic two-dimensional culture system to establish a link between the flow shear stress and the proliferative activity of cultured RGCs. Using this microfluidic device, we successfully visualized the artificial CSF and RGCs in direct contact and found a significant enhancement of proliferative capacity of RGCs in response to increased shear stress. To determine if there are any mechanosensitive ion channels involved, a mechanical stimulation by poking was given to individual RGCs. We found that a poking on radial glial cell induced an increase in intracellular Ca²⁺ level, which disappeared under the extracellular Ca²⁺-free condition. Our results suggest that the shear stress by CSF flow possibly activates mechanosensitive Ca²⁺ channels, which gives rise to a Ca²⁺ entry which enhances the proliferative capacity of RGCs.
Brain
;
Calcium Channels*
;
Calcium*
;
Cerebrospinal Fluid
;
Ependymoglial Cells*
;
Inositol 1,4,5-Trisphosphate
;
Ion Channels
;
Lab-On-A-Chip Devices
;
Microfluidics
;
Neural Stem Cells
10.Fabrication of Polymerase Chain Reaction Plastic Lab-on-a-Chip Device for Rapid Molecular Diagnoses.
Kieu The Loan TRINH ; Hainan ZHANG ; Dong Jin KANG ; Sung Hyun KAHNG ; Ben D TALL ; Nae Yoon LEE
International Neurourology Journal 2016;20(Suppl 1):S38-S48
PURPOSE: We aim to fabricate a thermoplastic poly(methylmethacrylate) (PMMA) Lab-on-a-Chip device to perform continuous- flow polymerase chain reactions (PCRs) for rapid molecular detection of foodborne pathogen bacteria. METHODS: A miniaturized plastic device was fabricated by utilizing PMMA substrates mediated by poly(dimethylsiloxane) interfacial coating, enabling bonding under mild conditions, and thus avoiding the deformation or collapse of microchannels. Surface characterizations were carried out and bond strength was measured. The feasibility of the Lab-on-a-Chip device for performing on-chip PCR utilizing a lab-made, portable dual heater was evaluated. The results were compared with those obtained using a commercially available thermal cycler. RESULTS: A PMMA Lab-on-a-Chip device was designed and fabricated for conducting PCR using foodborne pathogens as sample targets. A robust bond was established between the PMMA substrates, which is essential for performing miniaturized PCR on plastic. The feasibility of on-chip PCR was evaluated using Escherichia coli O157:H7 and Cronobacter condimenti, two worldwide foodborne pathogens, and the target amplicons were successfully amplified within 25 minutes. CONCLUSIONS: In this study, we present a novel design of a low-cost and high-throughput thermoplastic PMMA Lab-on-a-Chip device for conducting microscale PCR, and we enable rapid molecular diagnoses of two important foodborne pathogens in minute resolution using this device. In this regard, the introduced highly portable system design has the potential to enable PCR investigations of many diseases quickly and accurately.
Bacteria
;
Cronobacter
;
Diagnosis*
;
Escherichia coli
;
Lab-On-A-Chip Devices*
;
Plastics*
;
Polymerase Chain Reaction*
;
Polymethyl Methacrylate

Result Analysis
Print
Save
E-mail