1.Mechanism of Modified Danggui Shaoyaosan in Improving Inflammation and Apoptosis in Acne via Regulating JNK/p38 MAPK Pathway
Gongzhen CHEN ; Yuqi YANG ; Xin LIU ; Ting TANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):31-40
ObjectiveTo explore the therapeutic effects and mechanisms of modified Danggui Shaoyaosan on acne based on the c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (p38 MAPK) pathway. MethodsA rat ear acne model was established in SD rats, and the rats were divided into a blank group, a model group, and low-, medium-, and high-dose groups of modified Danggui Shaoyaosan (7.15, 14.30, 28.60 g·kg·d-1), with six rats in each group. After the administration for 14 consecutive days, morphological changes in the rats' auricles were observed, and hematoxylin-eosin (HE) staining was used to examine the pathological changes in the acne-affected ear tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the ear tissue. Quantitative reverse transcription polymerase chain reaction (Real-time PCR) was performed to detect the mRNA expression levels of Caspase-3, B cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), JNK, and p38 MAPK in the ear tissue. Additionally, Western blot analysis was conducted to assess the protein levels of Caspase-3, Bcl-2, Bax, JNK, and p38 MAPK in the ear tissue. The active components and key targets of modified Danggui Shaoyaosan in the treatment of acne were identified through network pharmacology analysis. Molecular docking was then employed to evaluate the interactions between the main active components and the key targets. ResultsThe results of the animal experiment demonstrated that compared with those in the blank group, rats in the model group exhibited redness, swelling, thickening, hardening, dryness, and roughness of the auricle. The surface showed sebaceous scales and desquamation, accompanied by acne-like lesions such as papule-like elevations or cysts. Histopathological changes included keratinization, epidermal thickening, dermal collagen fiber degeneration and necrosis, subcutaneous muscle degeneration and necrosis, inflammatory cell infiltration, and fibrous tissue proliferation. The mRNA and protein expression levels of IL-1β, TNF-α, Caspase-3, Bax, JNK, and p38 MAPK were significantly increased (P<0.01), while those of Bcl-2 were significantly decreased (P<0.01). In comparison to the model group, the modified Danggui Shaoyaosan groups showed marked improvement in acne-like lesions of the auricle, with varying degrees of histopathological damage reduction. Additionally, the mRNA and protein expression levels of IL-1β, TNF-α, Caspase-3, Bax, JNK, and p38 MAPK in the tissue were significantly decreased (P<0.05, P<0.01), while those of Bcl-2 were significantly increased (P<0.05, P<0.01). Network pharmacology analysis indicated that the key compounds in modified Danggui Shaoyaosan responsible for its effects in treating acne may include acacetin, kaempferol, luteolin, quercetin, wogonin, and baicalein. These compounds exerted their effects by modulating core targets such as TNF, IL-1β, Caspase-3, and Bcl-2, thereby alleviating inflammation and apoptosis and ultimately improving acne symptoms. ConclusionModified Danggui Shaoyaosan may exert its therapeutic effects on acne by inhibiting the activation of the JNK/p38 MAPK pathway, thereby alleviating inflammation and apoptosis.
2.Regulation of Signaling Pathways Related to Diabetes Mellitus-induced Erectile Dysfunction by Traditional Chinese Medicine: A Review
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):339-346
Erectile dysfunction (ED) is one of the most common manifestations of male reproductive system damage, and it is also a common complication of diabetes mellitus (DM). ED is closely related to the patient’s quality of life, sexual partner relationship, and family stability. In addition, it is an early warning signal for many physical diseases. As the incidence of DM keeps growing, the incidence of diabetes mellitus-induced erectile dysfunction (DMED) increases accordingly. Currently, drug treatment for ED presents limited effects, and the treatment of DMED is more difficult. Therefore, developing effective and safe drugs is a clinical problem that needs to be solved urgently. Recent studies have proved that traditional Chinese medicine (TCM) can alleviate oxidative stress, reduce inflammation, and modulate autophagy by regulating multiple signaling pathways, thus ameliorating DMED, showing definite therapeutic effects via multiple pathways, targets, and links. Multiple signaling pathways such as phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), nitric oxide (NO)-cyclic guanosine monophosphate (cGMP), Ras homolog family member A (RhoA)/Rho, nuclear factor erythroid 2-related factor 2 (NRF2), mitogen-activated protein kinase (MAPK), adenosine monophosphate-activated protein kinase (AMPK), and protein kinase C (PKC) mediate the occurrence and development of DMED, while there is still a lack of conclusive records. By reviewing relevant articles published in recent years, this paper summarizes the role of the above-mentioned signaling pathways in the occurrence and development of DMED and the research progress in TCM treatment of DMED via regulation of related signaling pathways. This review is expected to provide new ideas and references for further clinical diagnosis and treatment, basic research, and drug development.
3.Anti-osteoporosis Effect of Isorhamnetin: A Review
Shilong MENG ; Xu ZHANG ; Yawei XU ; Yang YU ; Wei LI ; Yanguang CAO ; Xiaolin SHI ; Wei ZHANG ; Kang LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):347-352
Osteoporosis is a common senile bone metabolism disease, clinically characterized by decreased bone mass, destruction of bone microstructure, increased bone fragility, and easy fracture. It tends to occur in the elderly and postmenopausal women, seriously threatening the quality of life and physical and mental health of the elderly. At present, the treatment of osteoporosis is mainly based on oral western medicines, such as calcium, Vitamin D, and bisphosphonates. Still, there are drawbacks such as a long medication cycle and many adverse reactions. In recent years, due to the advantages of multi-component, multi-pathway, and multi-target, some traditional Chinese medicines and effective ingredients can regulate the osteogenic and osteoclastic differentiation process in both directions and are widely used in the prevention and treatment of osteoporosis. Hippophae rhamnoides is a commonly used herbal medicine, and its fruits are rich in flavonoids, polyphenols, fatty acids, vitamins, and trace elements, which have been proven to have a good anti-osteoporosis effect. Isorhamnetin is the main effective ingredient of Hippophae rhamnoides fruits, which has many pharmacological effects such as anti-inflammation, anti-oxidative stress, anti-aging, and anti-tumor. Studies have shown that isorhamnetin can participate in the regulation of bone metabolism and has a good anti-osteoporosis effect. However, the pharmacological effects and related mechanisms of isorhamnetin against osteoporosis have not been systematically summarized. Therefore, this paper reviewed the pharmacological effects and related mechanisms of isorhamnetin against osteoporosis by referring to relevant literature to provide more basis for the development and application of isorhamnetin.
4.Study progress of novel biomarkers for early prediction of polymyxin-associated acute kidney injury
Ge YANG ; Jun YANG ; Fang LIU ; Yongchuan CHEN ; Hong ZHANG
China Pharmacy 2025;36(2):251-256
Polymyxin is an essential antibiotic for treating multidrug-resistant Gram-negative bacterial infections; however, its significant nephrotoxicity greatly limits its clinical application. To enhance its safety and improve patient outcomes, the study of novel biomarkers for the early prediction of polymyxin-associated acute kidney injury is critically important. Novel biomarkers, such as cystatin C, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, N-acetyl-β-glucosaminidase, β2- microglobulin, have shown obvious advantages in the early prediction of polymyxin-associated acute kidney injury. Compared to traditional biomarkers, these biomarkers can provide sensitive and specific diagnostic information in the early stages of kidney injury, helping to optimize individualized treatment plans and reduce clinical risks. However, the high cost of detection and complex operation still limit their clinical promotion. Future research should focus on optimizing the detection technology of new biomarkers, simplifying the operation process and reducing costs, while conducting multi-center, large-scale randomized controlled trials to systematically evaluate the sensitivity and specificity of various novel biomarkers, in order to promote their application in the field of prediction of renal injury in clinical practice.
5.Optimization of osmotic pressure swelling method in the process of hemoglobin extraction from red blood cells
Honghui ZHANG ; Wentao ZHOU ; Shasha HAO ; Hong WANG ; Jiaxin LIU ; Chengmin YANG ; Shen LI ; Fengjuan LI
Chinese Journal of Blood Transfusion 2025;38(1):91-96
[Objective] To extract hemoglobin (Hb) from red blood cells using osmotic pressure swelling method, expected to achieve a hemoglobin dissolution rate of ≥80% and a cell membrane integrity rate of ≥70%. [Methods] Human umbilical cord blood red blood cells were used as raw materials and phosphate buffer solution was used as the swelling solution for red blood cells. A three factor three-level orthogonal experiment (n=3) was conducted to determine the optimal matching conditions for selecting the osmolality molar concentration of phosphate buffer solution, pH value of hypotonic phosphate buffer solution and volume ratio of hypotonic phosphate buffer solution to washed red blood cells. Red blood cell swelling solution samples (n=6) were prepared by the optimal matching conditions and the original process conditions. The hemoglobin dissolution rate and cell membrane integrity rate were checked. In the expanded comparative experiment, red blood cell swelling solution samples (n=6) were prepared by the optimal matching conditions and the original process conditions, which was filtered by ultrafiltration membranes. The filtration time and hemoglobin yield were checked. [Results] The optimal matching conditions for preparing red blood cell swelling solution were obtained through orthogonal experiment as follows: osmotic pressure molar concentration was 30 mOsmol/Kg, pH was 7.8, and phosphate buffer to red blood cell volume ratio was 6∶1. On the basis of the above conditions, the red blood cell swelling solution sample was compared with the original process sample: the hemoglobin dissolution rate was (82.4±1.8)% vs (78.6±3.0)% (P<0.05), and the cell membrane integrity rate was (65.8±4.0)% vs (28.7±2.3)% (P<0.05). In the expanded comparative experiment, the optimal matching conditions were compared with the original process conditions: filtration time(s) (327±9) vs (434±13) (P<0.05), and hemoglobin yield was (72.3±1.2)% vs (66.0±1.4)% (P<0.05). [Conclusion] Compared with the original preparation process, the hemoglobin extraction process which optimized through orthogonal experiments greatly reduces the cell membrane fragmentation rate and minimizes the entry of cell membrane matrix into the target solution, ensuring a slightly higher hemoglobin dissolution rate, and reducing the preparation difficulty for the subsequent cell membrane separation and further purification.
6.Molecular biological research and molecular homologous modeling of Bw.03 subgroup
Li WANG ; Yongkui KONG ; Huifang JIN ; Xin LIU ; Ying XIE ; Xue LIU ; Yanli CHANG ; Yafang WANG ; Shumiao YANG ; Di ZHU ; Qiankun YANG
Chinese Journal of Blood Transfusion 2025;38(1):112-115
[Objective] To study the molecular biological mechanism for a case of ABO blood group B subtype, and perform three-dimensional modeling of the mutant enzyme. [Methods] The ABO phenotype was identified by the tube method and microcolumn gel method; the ABO gene of the proband was detected by sequence-specific primer polymerase chain reaction (PCR-SSP), and the exon 6 and 7 of the ABO gene were sequenced and analyzed. Homologous modeling of Bw.03 glycosyltransferase (GT) was carried out by Modeller and analyzed by PyMOL2.5.0 software. [Results] The weakening B antigen was detected in the proband sample by forward typing, and anti-B antibody was detected by reverse typing. PCR-SSP detection showed B, O gene, and the sequencing results showed c.721 C>T mutation in exon 7 of the B gene, resulting in p. Arg 241 Trp. Compared with the wild type, the structure of Bw.03GT was partially changed, and the intermolecular force analysis showed that the original three hydrogen bonds at 241 position disappeared. [Conclusion] Blood group molecular biology examination is helpful for the accurate identification of ambiguous blood group. Homologous modeling more intuitively shows the key site for the weakening of Bw.03 GT activity. The intermolecular force analysis can explain the root cause of enzyme activity weakening.
7.Effects of galangin on autophagy and apoptosis of chondrocytes in knee osteoarthritis rats
Qing YANG ; Wei HUANG ; Qingyi LIU ; Zhongyu ZHOU
China Pharmacy 2025;36(3):312-317
OBJECTIVE To investigate the effects of galangin (GLA) on autophagy and apoptosis of chondrocytes in knee osteoarthritis (KOA) rats by regulating the adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/UNC-51-like kinase 1 (ULK1) signaling pathway. METHODS KOA rat model was constructed and separated into model group, L-GLA, M-GLA, H-GLA groups [subcutaneous injection of 100, 200, 400 μg/kg GLA], GLA+Compound C group [subcutaneous injection of 400 μg/kg GLA+0.2 mg/kg AMPK inhibitor Compound C], with 10 rats in each group. Additionally, 10 normally fed rats were selected as the sham operation group. After the last medication, the degree of knee joint swelling of rats in each group was detected; the pathology of knee joints in KOA rats was observed. The serum expressions of matrix metalloproteinase 13 (MMP-13) and interleukin-1β (IL-1β) in KOA rats were detected; the autophagy of chondrocytes in KOA rats was observed; the chondrocyte apoptosis in KOA rats was detected; the phosphorylation of AMPK/mTOR/ULK1 pathway-related proteins in cartilage tissue of knee joint were detected in rats. RESULTS Compared with the sham operation group, the arrangement of articular chondrocytes in the model group was disordered, with nuclear pyknosis and severe fibrosis of the articular cartilage layer, accompanied by a large amount of inflammatory cell infiltration; the degree of joint swelling, the number of autophagic vacuoles and apoptosis rate of chondrocytes, serum levels of MMP-13 and IL-1β, and the phosphorylation of mTOR protein in cartilage tissue of knee joint were all increased significantly (P<0.05), while the phosphorylation of AMPK and ULK1 protein were all decreased significantly in cartilage tissue of knee joint (P<0.05). Compared with the model group, L- GLA, M-GLA, H-GLA groups showed significant improvement in joint cartilage injury and reduced infiltration of inflammatory cells in rats. The above quantitative indicators were significantly reversed in a dose-dependent manner,except the number of autophagic vacuoles increased significantly (P<0.05). Compared with the H-GLA group, the GLA+ Compound C group showed aggravated cartilage tissue of joint cartilage injury and inflammatory cell infiltration in rats, and the above quantitative indicators were reversed significantly (P<0.05). CONCLUSIONS GLA can promote autophagy and inhibit apoptosis of chondrocytes in KOA rats, the mechanism of which may be associated with activating AMPK/mTOR/ULK1 signaling pathway.
8.Study progress of novel biomarkers for early prediction of polymyxin-associated acute kidney injury
Ge YANG ; Jun YANG ; Fang LIU ; Yongchuan CHEN ; Hong ZHANG
China Pharmacy 2025;36(2):251-256
Polymyxin is an essential antibiotic for treating multidrug-resistant Gram-negative bacterial infections; however, its significant nephrotoxicity greatly limits its clinical application. To enhance its safety and improve patient outcomes, the study of novel biomarkers for the early prediction of polymyxin-associated acute kidney injury is critically important. Novel biomarkers, such as cystatin C, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, N-acetyl-β-glucosaminidase, β2- microglobulin, have shown obvious advantages in the early prediction of polymyxin-associated acute kidney injury. Compared to traditional biomarkers, these biomarkers can provide sensitive and specific diagnostic information in the early stages of kidney injury, helping to optimize individualized treatment plans and reduce clinical risks. However, the high cost of detection and complex operation still limit their clinical promotion. Future research should focus on optimizing the detection technology of new biomarkers, simplifying the operation process and reducing costs, while conducting multi-center, large-scale randomized controlled trials to systematically evaluate the sensitivity and specificity of various novel biomarkers, in order to promote their application in the field of prediction of renal injury in clinical practice.
9.Palpitations, Shortness of Breath, Weakness in Limbs, Edema, and Dyspnea: A Rare Inflammatory Myopathy with Positive Aniti-mitochondrial Antibodies and Cardiac Involvement
Chunsu LIANG ; Xuchang ZHANG ; Ning ZHANG ; Lin KANG ; Xiaohong LIU ; Jiaqi YU ; Yingxian LIU ; Lin QIAO ; Yanli YANG ; Xiaoyi ZHAO ; Ruijie ZHAO ; Na NIU ; Xuelian YAN
Medical Journal of Peking Union Medical College Hospital 2025;16(1):248-255
This article presents a case study of a patient who visited the Geriatric Department of Peking Union Medical College Hospital due to "palpitations, shortness of breath for more than 2 years, limb weakness for 6 months, edema, and nocturnal dyspnea for 2 months". The patient exhibited decreased muscle strength in the limbs and involvement of swallowing and respiratory muscles, alongside complications of heart failure and various arrhythmias which were predominantly atrial. Laboratory tests revealed the presence of multiple autoantibodies and notably anti-mitochondrial antibodies. Following a comprehensive multidisciplinary evaluation, the patient was diagnosed with anti-mitochondrial antibody-associated inflammatory myopathy. Treatment involved a combination of glucocorticoids and immunosuppressants, along with resistance exercises for muscle strength and rehabilitation training for lung function, resulting in significant improvement of clinical symptoms. The case underscores the importance of collaborative multidisciplinary approaches in diagnosing and treating rare diseases in elderly patients, where careful consideration of clinical manifestations and subtle abnormal clinical data can lead to effective interventions.
10.Mechanism of Action of Kaixinsan in Ameliorating Alzheimer's Disease
Xiaoming HE ; Xiaotong WANG ; Dongyu MIN ; Xinxin WANG ; Meijia CHENG ; Yongming LIU ; Yetao JU ; Yali YANG ; Changbin YUAN ; Changyang YU ; Li ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):20-29
ObjectiveTo investigate the mechanism of action of Kaixinsan in the treatment of Alzheimer's disease (AD) based on network pharmacology, molecular docking, and animal experimental validation. MethodsThe Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and the Encyclopedia of Traditional Chinese Medicine(ETCM) databases were used to obtain the active ingredients and targets of Kaixinsan. GeneCards, Online Mendelian Inheritance in Man(OMIM), TTD, PharmGKB, and DrugBank databases were used to obtain the relevant targets of AD. The intersection (common targets) of the active ingredient targets of Kaixinsan and the relevant targets of AD was taken, and the network interaction analysis of the common targets was carried out in the STRING database to construct a protein-protein interaction(PPI) network. The CytoNCA plugin within Cytoscape was used to screen out the core targets, and the Metascape platform was used to perform gene ontology(GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis. The “drug-active ingredient-target” interaction network was constructed with the help of Cytoscape 3.8.2, and AutoDock Vina was used for molecular docking. Scopolamine (SCOP) was utilized for modeling and injected intraperitoneally once daily. Thirty-two male C57/BL6 mice were randomly divided into blank control (CON) group (0.9% NaCl, n=8), model (SCOP) group (3 mg·kg-1·d-1, n=8), positive control group (3 mg·kg-1·d-1 of SCOP+3 mg·kg-1·d-1 of Donepezil, n=8), and Kaixinsan group (3 mg·kg-1·d-1 of SCOP+6.5 g·kg-1·d-1 of Kaixinsan, n=8). Mice in each group were administered with 0.9% NaCl, Kaixinsan, or Donepezil by gavage twice a day for 14 days. Morris water maze experiment was used to observe the learning memory ability of mice. Hematoxylin-eosin (HE) staining method was used to observe the pathological changes in the CA1 area of the mouse hippocampus. Enzyme linked immunosorbent assay(ELISA) was used to determine the serum acetylcholine (ACh) and acetylcholinesterase (AChE) contents of mice. Western blot method was used to detect the protein expression levels of signal transducer and activator of transcription 3(STAT3) and nuclear transcription factor(NF)-κB p65 in the hippocampus of mice. ResultsA total of 73 active ingredients of Kaixinsan were obtained, and 578 potential targets (common targets) of Kaixinsan for the treatment of AD were screened out. Key active ingredients included kaempferol, gijugliflozin, etc.. Potential core targets were STAT3, NF-κB p65, et al. GO functional enrichment analysis obtained 3 124 biological functions, 254 cellular building blocks, and 461 molecular functions. KEGG pathway enrichment obtained 248 pathways, mainly involving cancer-related pathways, TRP pathway, cyclic adenosine monophosphate(cAMP) pathway, and NF-κB pathway. Molecular docking showed that the binding of the key active ingredients to the target targets was more stable. Morris water maze experiment indicated that Kaixinsan could improve the learning memory ability of SCOP-induced mice. HE staining and ELISA results showed that Kaixinsan had an ameliorating effect on central nerve injury in mice. Western blot test indicated that Kaixinsan had a down-regulating effect on the levels of NF-κB p65 phosphorylation and STAT3 phosphorylation in the hippocampal tissue of mice in the SCOP model. ConclusionKaixinsan can improve the cognitive impairment function in SCOP model mice and may reduce hippocampal neuronal damage and thus play a therapeutic role in the treatment of AD by regulating NF-κB p65, STAT3, and other targets involved in the NF-κB signaling pathway.

Result Analysis
Print
Save
E-mail