1.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
2.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
3.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
4.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
5.Comparison of Wild and Cultivated Bupleurum scorzonerifolium Based on Traditional Quality Evaluation
Changsheng YUAN ; Feng ZHOU ; Xingyu LIU ; Yu SHI ; Yihan WANG ; Huaizhu LI ; Yongliang LI ; Shan GUAN ; Huaizhong GAO ; Yanmeng LIU ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):203-214
ObjectiveTo characterize the quality differences among different germplasm and introduced varieties of Bupleurum scorzonerifolium roots(BSR), and explore the underlying molecular mechanisms, providing a basis for high-quality production and quality control. MethodsWild BSR from Yulin(YLW) served as the quality reference, we conducted comparative analysis among YLW, locally domesticated wild germplasm in Yulin(YLC3), Daqing germplasm introduced and cultivated in Yulin(YLDQC3), and locally cultivated germplasm in Daqing(DQC3). A combination of traditional pharmacognostic methods and modern multi-omics analyses was employed, including macroscopic traits(appearance, odor), microscopic features(proportions of cork, phloem, xylem), cell wall component contents(hemicellulose, cellulose, lignin), carbohydrate contents(starch, water-soluble polysaccharides), marker compound contents(ethanol-soluble extracts, total saponins, liposoluble extracts, and saikosaponins A, B2, C, D), metabolomics, and transcriptomics, in order to systematically characterize quality differences and investigate molecular mechanisms among these samples. ResultsMacroscopically, Yulin-produced BSR(YLW, YLC3, YLDQC3) exhibited significantly greater weight, length, and upper and middle diameters than Daqing-produced BSR(DQC3). Odor-wise, YLW and YLC3 had a a fragrance taste, YLDQC3 had a rancid oil odor, and DQC3 had a sweet and fragrant taste. Microscopically, Yulin germplasm(YLW, YLC3) and Daqing germplasm(YLDQC3, DQC3) shared similar structural features, respectively. However, Yulin germplasm showed significantly higher proportions of cork and phloem, as well as stronger xylem vessel staining intensity compared to Daqing germplasm. Regarding various component contents, Yulin germplasm contained significantly higher levels of ethanol-soluble extracts, total saponins, and saikosaponins A, B2, C, D, while Daqing germplasm had significantly higher levels of hemicellulose, starch, and liposoluble extracts. After introduction to Yulin, the Daqing germplasm(YLDQC3) showed increased starch, water-soluble polysaccharides and liposoluble extracts contents, decreased cell wall component content, but no significant difference in other component contents. Metabolomics revealed that saponins and terpenes accumulated significantly in Yulin germplasm, while alcohols and aldehydes accumulated predominantly in Daqing germplasm. Transcriptomics indicated similar gene expression patterns within the same germplasm but specificity between different germplasms. Integrative metabolomic-transcriptomic analysis identified 145 potential key genes associated with the saikosaponin biosynthesis pathway, including one acetyl-coenzyme A(CoA) acetyltransferase gene(ACAT), one 3-hydroxy-3-methylglutaryl-coenzyme A synthase gene(HMGS), two hydroxymethylglutaryl-CoA(HMG-CoA) reductase genes(HMG), one phosphomevalonate kinase gene(PMK), one 1-deoxy-D-xylose-5-phosphate synthase gene(CLA), one hydroxymethylbuten-1-aldol synthase gene(HDR), two farnesyl pyrophosphate synthase genes(FPPS), one squalene synthase gene(SQS), one β-amyrin synthase gene(BAS), 102 cytochrome P450(CYP450) gene family members, and 32 uridine diphosphate-glucuronosyltransferase(UGT) gene family members. ConclusionAmong the three cultivated types, YLC3 most closely resembles YLW in appearance, microscopic features, contents of major bioactive constituents, metabolomic and transcriptomic profiles. Yulin germplasm exhibits superior saponin synthesis capability compared to Daqing germplasm, and Yulin region is more suitable for the growth of B. scorzonerifolium. Based on these findings, it is recommended that artificial cultivation in northern Shaanxi and similar regions utilize the local Yulin germplasm source cultivated for at least three years.
6.Comparison of Wild and Cultivated Polygalae Radix Based on Traditional Quality Evaluation
Yihan WANG ; Yanmeng LIU ; Huaizhu LI ; Yongliang LI ; Shan GUAN ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):215-224
ObjectiveBased on the traditional quality evaluation methods summarized in previous dynasties, this paper systematically contrasted the quality differences between wild Polygalae Radix(WPR) and cultivated Polygalae Radix(CPR) from the aspects of character, microscope and chemical composition by modern scientific and technological means, providing a basis for high-quality production and quality control. MethodsCPR and local WPR in Yulin city, Shaanxi province from 1 to 6 years were collected, and a systematic comparative analysis was conducted using traditional pharmacognosy research methods combined with modern multi-omics analysis techniques, including character traits(length, weight, diameter), cross-sectional microscopic features(proportions of cork, phloem, xylem, etc), cell wall component content(hemicellulose, cellulose, lignin), extracts content(water-soluble extract and alcohol-soluble extract), carbohydrate content(starch, water-soluble polysaccharides), contents of total flavonoids, total saponins and specific marker compounds(3,6′-disinapoyl sucrose, polygalaxanthone Ⅲ, tenuifoliside A, tenuifoliside C, sibiricose A5 and A6) and other indexes. Ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed to conduct comparative analysis of secondary metabolites in WPR and CPR, and multivariate statistical analysis such as principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were combined to screen the key differential components of them. ResultsIn terms of appearance, there were significant differences between WPR and CPR. The characteristics of WPR conformed to the "thick wrinkles on the epidermis" recorded in ancient books, featuring a wrinkled surface and grayish-brown appearance. However, CPR had a finer texture and a yellowish white appearance, with weight, length, and diameter increasing with longer cultivation periods. In terms of microscopy, WPR exhibited a thick cork layer with fissures in the phloem, whereas CPR had a thinner cork layer with uniformly arranged cork cells. Younger PR specimens showed numerous phloem fissures in cross-sections, while older specimens display progressively denser arrangements of phloem parenchyma cells. In terms of the contents of various major components, the contents of water-soluble extract, starch and total saponins in WPR were inversely proportional to the root diameter, while the contents of water-soluble extract, water-soluble polysaccharides and total saponins in CPR decreased with the increase of planting years. The content of xanthones in WPR was significantly higher than that of CPR, while the contents of other major components showed no significant change pattern. Among the six indicator components, the average content of sibiricose A5 in WPR was significantly higher than that of CPR, followed by slightly higher content of tenuifoliside A. In CPR, the relative content of 3,6′-disinapoyl sucrose and tenuifoliside A was the highest. The former showed an increase in volatility with increasing cultivation years, while the latter showed a decrease in volatility. The results of differential compound analysis based on UPLC-Q-TOF-MS showed that there were significant differences in metabolites between WPR and CPR samples. Among them, the seven compounds with the largest differences among WPR samples of different thicknesses were polygalasaponins, and for CPR with different planting years, the main differential compounds were oligosaccharide esters. ConclusionThere are differences between WPR and CPR in character, microscopic structure and chemical composition, and some components are inversely proportional with the increase of diameter and cultivation duration due to the distribution characteristics. However, the longer the cultivation years of PR, the closer it is to the "thick wrinkles on the epidermis" of WPR, which has been respected by generations. It is suggested that this traditional character combined with modern component contents should be used as the index of artificial cultivation and quality control of PR.
7.Structure, content and data standardization of rehabilitation medical records
Yaru YANG ; Zhuoying QIU ; Di CHEN ; Zhongyan WANG ; Meng ZHANG ; Shiyong WU ; Yaoguang ZHANG ; Xiaoxie LIU ; Yanyan YANG ; Bin ZENG ; Mouwang ZHOU ; Yuxiao XIE ; Guangxu XU ; Jiejiao ZHENG ; Mingsheng ZHANG ; Xiangming YE ; Jian YANG ; Na AN ; Yuanjun DONG ; Xiaojia XIN ; Xiangxia REN ; Ye LIU ; Yifan TIAN
Chinese Journal of Rehabilitation Theory and Practice 2025;31(1):21-32
ObjectiveTo elucidate the critical role of rehabilitation medical records (including electronic records) in rehabilitation medicine's clinical practice and management, comprehensively analyzed the structure, core content and data standards of rehabilitation medical records, to develop a standardized medical record data architecture and core dataset suitable for rehabilitation medicine and to explore the application of rehabilitation data in performance evaluation and payment. MethodsBased on the regulatory documents Basic Specifications for Medical Record Writing and Basic Specifications for Electronic Medical Records (Trial) issued by National Health Commission of China, and referencing the World Health Organization (WHO) Family of International Classifications (WHO-FICs) classifications, International Classification of Diseases (ICD-10/ICD-11), International Classification of Functioning, Disability and Health (ICF), and International Classification of Health Interventions (ICHI Beta-3), this study constructed the data architecture, core content and data standards for rehabilitation medical records. Furthermore, it explored the application of rehabilitation record summary sheets (home page) data in rehabilitation medical statistics and payment methods, including Diagnosis-related Groups (DRG), Diagnosis-Intervention Packet (DIP) and Case Mix Index. ResultsThis study proposed a systematic standard framework for rehabilitation medical records, covering key components such as patient demographics, rehabilitation diagnosis, functional assessment, rehabilitation treatment prescriptions, progress evaluations and discharge summaries. The research analyzed the systematic application methods and data standards of ICD-10/ICD-11, ICF and ICHI Beta-3 in the fields of medical record terminology, coding and assessment. Constructing a standardized data structure and data standards for rehabilitation medical records can significantly improve the quality of data reporting based on the medical record summary sheet, thereby enhancing the quality control of rehabilitation services, effectively supporting the optimization of rehabilitation medical insurance payment mechanisms, and contributing to the establishment of rehabilitation medical performance evaluation and payment based on DRG and DIP. ConclusionStructured rehabilitation records and data standardization are crucial tools for quality control in rehabilitation. Systematically applying the three reference classifications of the WHO-FICs, and aligning with national medical record and electronic health record specifications, facilitate the development of a standardized rehabilitation record architecture and core dataset. Standardizing rehabilitation care pathways based on the ICF methodology, and developing ICF- and ICD-11-based rehabilitation assessment tools, auxiliary diagnostic and therapeutic systems, and supporting terminology and coding systems, can effectively enhance the quality of rehabilitation records and enable interoperability and sharing of rehabilitation data with other medical data, ultimately improving the quality and safety of rehabilitation services.
8.Standardization of electronic medical records data in rehabilitation
Yifan TIAN ; Fang XUN ; Haiyan YE ; Ye LIU ; Yingxin ZHANG ; Yaru YANG ; Zhongyan WANG ; Meng ZHANG ; Xiaoxie LIU ; Yanyan YANG ; Bin ZENG ; Mouwang ZHOU ; Yuxiao XIE ; Guangxu XU ; Jiejiao ZHENG ; Mingsheng ZHANG ; Xiangming YE ; Fubiao HUANG ; Qiuchen HUANG ; Yiji WANG ; Di CHEN ; Zhuoying QIU
Chinese Journal of Rehabilitation Theory and Practice 2025;31(1):33-44
ObjectiveTo explore the data standard system of electronic medical records in the field of rehabilitation, focusing on the terminology and coding standards, data structure, and key content categories of rehabilitation electronic medical records. MethodsBased on the Administrative Norms for the Application of Electronic Medical Records issued by the National Health Commission of China, the electronic medical record standard architecture issued by the International Organization for Standardization and Health Level Seven (HL7), the framework of the World Health Organization Family of International Classifications (WHO-FICs), Basic Architecture and Data Standards of Electronic Medical Records, Basic Data Set of Electronic Medical Records, and Specifications for Sharing Documents of Electronic Medical Records, the study constructed and organized the data structure, content, and data standards of rehabilitation electronic medical records. ResultsThe data structure of rehabilitation electronic medical records should strictly follow the structure of electronic medical records, including four levels (clinical document, document section, data set and data element) and four major content areas (basic information, diagnostic information, intervention information and cost information). Rehabilitation electronic medical records further integrated information related to rehabilitation needs and characteristics, emphasizing rehabilitation treatment, into clinical information. By fully applying the WHO-FICs reference classifications, rehabilitation electronic medical records could establish a standardized framework, diagnostic criteria, functional description tools, coding tools and terminology index tools for the coding, indexing, functional description, and analysis and interpretation of diseases and health problems. The study elaborated on the data structure and content categories of rehabilitation electronic medical records in four major categories, refined the granularity of reporting rehabilitation content in electronic medical records, and provided detailed data reporting guidance for rehabilitation electronic medical records. ConclusionThe standardization of rehabilitation electronic medical records is significant for improving the quality of rehabilitation medical services and promoting the rehabilitation process of patients. The development of rehabilitation electronic medical records must be based on the national and international standards. Under the general electronic medical records data structure and standards, a rehabilitation electronic medical records data system should be constructed which incorporates core data such as disease diagnosis, functional description and assessment, and rehabilitation interventions. The standardized rehabilitation electronic medical records scheme constructed in this study can support the improvement of standardization of rehabilitation electronic medical records data information.
9.Standardization of outpatient medical record in rehabilitation setting
Ye LIU ; Qing QIN ; Haiyan YE ; Yifan TIAN ; Yingxin ZHANG ; Yaru YANG ; Zhongyan WANG ; Meng ZHANG ; Xiaoxie LIU ; Yanyan YANG ; Bin ZENG ; Mouwang ZHOU ; Yuxiao XIE ; Guangxu XU ; Jiejiao ZHENG ; Mingsheng ZHANG ; Xiangming YE ; Fubiao HUANG ; Qiuchen HUANG ; Yiji WANG ; Di CHEN ; Zhuoying QIU
Chinese Journal of Rehabilitation Theory and Practice 2025;31(1):45-54
ObjectiveTo analyze the data structure and standards of rehabilitation outpatient medical records, to provide data support for improving the quality of rehabilitation outpatient care and developing medical insurance payment policies. MethodsBased on the normative documents issued by the National Health Commission, Basic Standards for Medical Record Writing and Standards for Electronic Medical Record Sharing Documents, in accordance with the Quality Management Regulations for Outpatient (Emergency) Diagnosis and Treatment Information Pages (Trial), reference to the framework of the World Health Organization Family of International Classifications (WHO-FICs), the data framework and content of rehabilitation outpatient medical records were determined, and the data standards were discussed. ResultsThis study constructed a data framework for rehabilitation outpatient medical records, including four main components: patient basic information, visit process information, diagnosis and treatment information, and cost information. Three major reference classifications of WHO-FICs, International Classification of Diseases, International Classification of Functioning, Disability and Health, and International Classification of Health Interventions,were used to establish diagnostic standards and standardized terminology, as well as coding disease diagnosis, functional description, functional assessment, and rehabilitation interventions, to improve the quality of data reporting, and level of quality control in rehabilitation. ConclusionThe structuring and standardization of rehabilitation outpatient medical records are the foundation for sharing of rehabilitation data. The using of the three major classifications of WHO-FICs is valuable for the terminology and coding of disease diagnosis, functional description and assessment, and intervention in rehabilitation outpatient medical records, which is significant for sharing and interconnectivity of rehabilitation outpatient data, as well as for optimizing the quality and safety of rehabilitation medical services.
10.Structure, content and data standardization of inpatient rehabilitation medical record summary sheet
Haiyan YE ; Qing QIN ; Ye LIU ; Yifan TIAN ; Yingxin ZHANG ; Yaru YANG ; Zhongyan WANG ; Meng ZHANG ; Xiaoxie LIU ; Yanyan YANG ; Bin ZENG ; Mouwang ZHOU ; Yuxiao XIE ; Guangxu XU ; Jiejiao ZHENG ; Mingsheng ZHANG ; Xiangming YE ; Fubiao HUANG ; Qiuchen HUANG ; Yiji WANG ; Di CHEN ; Zhuoying QIU
Chinese Journal of Rehabilitation Theory and Practice 2025;31(1):55-66
ObjectiveTo explore the standardization of inpatient rehabilitation medical record summary sheet, encompassing its structure, content and data standards, to enhance the standardization level of inpatient rehabilitation medical record summary sheet, improve data reporting quality, and provide accurate data support for medical insurance payment, hospital performance evaluation, and rehabilitation discipline evaluation. MethodsBased on the relevant specifications of the National Health Commission's Basic Norms for Medical Record Writing, Specifications for Sharing Documents of Electronic Medical Records, and Quality Management and Control Indicators for Inpatient Medical Record Summary Sheet (2016 Edition), this study analyzed the structure and content of the inpatient rehabilitation medical record summary sheet. The study systematically applied the three major reference classifications of the World Health Organization Family of International Classifications, International Classification of Diseases (ICD-10/ICD-11, ICD-9-CM-3), International Classification of Functioning, Disability and Health (ICF), and International Classification of Health Interventions (ICHI Beta-3), for disease diagnosis, functional description and assessment, and rehabilitation intervention, forming a standardized terminology system and coding methods. ResultsThe inpatient rehabilitation medical record summary sheet covered four major sections: inpatient information, hospitalization information, diagnosis and treatment information, and cost information. ICD-10/ICD-11 were the standards and coding tools for admission and discharge diagnoses in the inpatient rehabilitation medical record summary sheet. The three functional assessment tools recommended by ICD-11, the 36-item version of World Health Organization Disability Assessment Schedule 2.0, Brief Model Disability Survey and Generic Functioning domains, as well as ICF, were used for rehabilitation functioning assessment and the coding of outcomes. ICHI Beta-3 and ICD-9-CM-3 were used for coding surgical procedures and operations in the medical record summary sheet, and also for coding rehabilitation intervention items. ConclusionThe inpatient rehabilitation medical record summary sheet is a summary of the relevant content of the rehabilitation medical record and a tool for reporting inpatient rehabilitation data. It needs to be refined and optimized according to the characteristics of rehabilitation, with necessary data supplemented. The application of ICD-11/ICD-10, ICF and ICHI Beta-3/ICD-9-CM-3 classification standards would comprehensively promote the accuracy of inpatient diagnosis of diseases and functions. Based on ICD-11 and ICF, relevant functional assessment result data would be added, and ICHI Beta-3/ICD-9-CM-3 should be used to code rehabilitation interventions. Improving the quality of rehabilitation medical records and inpatient rehabilitation medical record summary sheet is an important part of rehabilitation quality control, and also lays an evidence-based data foundation for the analysis and application of inpatient rehabilitation medical record summary sheet.

Result Analysis
Print
Save
E-mail