1.Development of DUS Test Guidelines for New Pinellia ternata
Xinyao LI ; Mingxing WANG ; Bingbing LIAO ; Changjie CHEN ; Xiufu WAN ; Lanping GUO ; Yuhuan MIAO ; Dahui LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):225-233
Pinellia ternata, belonging to the Pinellia genus within the Araceae family, is a medicinal plant due to its tubers. There are severe issues with unclear germplasm and mixed varieties in its cultivation, necessitating urgent new variety protection efforts. The distinctness, uniformity, and stability (DUS) testing of the plant variety is the basis for protecting new plant varieties, and the DUS test guidelines are the technical basis for DUS testing. To develop the DUS test guidelines for P. ternata, agronomic traits of 229 germplasm of P. ternata were observed and measured during its two growth stages over the years, and each character was graded and described. A total of 38 traits were selected as the test traits of the DUS test guideline for P. ternata. There were three plant traits, 19 leaf traits, six flower traits, two fruit traits, two tuber traits, five bulbil traits, and one ploidy trait. These traits could be divided into 22 quality characters, 12 quantitative characters, and four pseudo-quantitative characters, as well as seven groups, including plants, leaves, flowers, fruit, tubers, bulbils, and ploidy. By searching for standard traits, 10 standard varieties were ultimately determined. Preparing these guidelines will have great significance for reviewing and protecting P. ternata varieties, safeguarding breeders' rights, and promoting the development of the P. ternata industry.
2.Apoptosis Regulation by Buzhong Yiqitang via PERK/eIF2α/ATF4/CHOP Pathway to Enhance Pulmonary Surfactant-associated Protein C Expression and Ameliorate Lung Injury in CIH Mice
Luyao ZHANG ; Yangjing WANG ; Bingbing LIU ; Jieru LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):19-27
ObjectiveTo investigate the effects of Buzhong Yiqitang on the abnormal expression of pulmonary surfactant-associated protein C (SFTPC) and lung injury induced by chronic intermittent hypoxia (CIH) and the mechanism of action. MethodsForty healthy adult male SPF-grade C57BL/6 mice were randomly allocated into five experimental groups: a normoxia group, a CIH group, and low-, medium-, and high-dose Buzhong Yiqitang groups, with eight mice in each group. During the modeling, mice in the normoxia group were housed under standard oxygen concentrations, while the CIH and all Buzhong Yiqitang groups were placed in a hypoxic chamber for 8 h daily over 35 d. Prior to each chamber session, mice in the low-, medium-, and high-dose Buzhong Yiqitang groups were administered decoctions by gavage at corresponding doses (8.1, 16.2, 32.4 g·kg-1·d-1 of crude drug, respectively), while those in normoxia and CIH groups received an equivalent volume of saline by gavage. The general conditions of the mice were recorded before and after the experiment. Pulmonary function was assessed using a non-invasive detection system. Serum SFTPC levels were measured using enzyme-linked immunosorbent assay (ELISA). Histopathological changes in lung tissue were evaluated using hematoxylin-eosin (HE) staining. Apoptosis in lung tissue was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Protein expression of SFTPC, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), protein kinase R-like endoplasmic reticulum kinase (PERK), phosphorylated PERK (p-PERK), eukaryotic initiation factor 2α (eIF2α), phosphorylated eIF2α (p-eIF2α), activating transcript factor 4 (ATF4), and CCAAT/enhancer-binding protein homologous protein (CHOP) in lung tissue was analyzed by Western blot. Immunofluorescence staining was employed to assess the expression of SFTPC and CHOP proteins in lung tissue. ResultsCompared to those in the normoxia group, mice in the CIH group showed significantly impaired pulmonary function and increased histopathological lung injury scores (P<0.05, P<0.01). Serum SFTPC levels increased, while SFTPC expression in lung tissue was reduced (P<0.05, P<0.01). The rate of apoptotic cells in lung tissue increased, and the expression of endoplasmic reticulum stress markers p-PERK, p-eIF2α, ATF4, and CHOP was upregulated (P<0.05, P<0.01). Compared with the CIH group, Buzhong Yiqitang intervention improved pulmonary function indicators and decreased the histopathological lung injury scores (P<0.05, P<0.01). Serum SFTPC levels were decreased, and lung tissue SFTPC expression was recovered (P<0.05, P<0.01). The apoptotic rate of lung tissue cells was significantly reduced, with downregulation of pro-apoptotic Bax and upregulation of anti-apoptotic Bcl-2 expression (P<0.05, P<0.01). Activation and expression of p-PERK, p-eIF2α, ATF4, and CHOP were also decreased (P<0.05, P<0.01). ConclusionBuzhong Yiqitang can alleviate lung injury and improve pulmonary function by reducing lung cell apoptosis and enhancing alveolar surfactant secretion, which may be related to the modulation of the PERK/eIF2α/ATF4/CHOP signaling pathway.
3.Effect of stress-induced hyperglycemia on new-onset atrial fibrillation in patients with acute myocardial infarction
Hongkai DONG ; Xuan XUE ; Bingbing PENG ; Meiling LIU ; Liuyi HAO
Journal of Public Health and Preventive Medicine 2025;36(6):114-118
Objective To explore the effect of stress hyperglycemia (SHG) on new-onset atrial fibrillation (NOAF) in patients with acute myocardial infarction (AMI). Methods A total of 1 321 patients with non-diabetic AMI who were admitted to the hospital from February 2024 to February 2025 were retrospectively selected. The occurrence of SHG was assessed according to the blood glucose level at admission. All patients received standard treatment after admission. The occurrence of NOAF during hospitalization was recorded. According to the presence or absence of NOAF occurrence, the patients were classified into NOAF group (n=118) and no-NOAF group (n=1,203). The clinical data of the two groups were collected and compared. Multivariate logistic regression analysis was applied to analyze the factors influencing the occurrence of NOAF in AMI patients. Results Among the 1 321 patients, 369 cases (27.93%) had SHG according to their blood glucose test at admission. After the completion of hospitalization, 118 of the 1321 patients developed NOAF, with an incidence rate of 8.93%. Multivariate logistic regression analysis revealed that SHG (OR=2.776, 95%CI: 1.384-5.567), smoking history (OR=2.680, 95%CI: 1.457-4.931), Killip grading at admission (OR=2.779, 95%CI: 1.361-5.671), Gensini score (OR=1.119, 95%CI: 1.038-1.205), time from onset to revascularization (OR=1.114, 95%CI: 0.973-1.275), and NT-proBNP (OR=1.123, 95%CI: 1.049-1.203) were independent influencing factors of NOAF in patients with AMI (P<0.05). Conclusion SHG, smoking history, Killip grading at admission, Gensini score, NT-proBNP, and time from onset to revascularization may influence the occurrence of NOAF in AMI patients during hospitalization, which should be given high attention.
4.Mechanism of "olfactory three needles" in regulating microglia and promoting remyelination in vascular dementia rats.
Le LI ; Qiang WANG ; Junyang LIU ; Weijia ZHAO ; Jiawei ZENG ; Bingbing ZHANG ; Ruirui MAO ; Weixing FENG ; Jie LI
Chinese Acupuncture & Moxibustion 2025;45(4):473-481
OBJECTIVE:
To observe the effects of "olfactory three needles" on cognition, learning and memory abilities, as well as hippocampal microglia (MG) phagocytic activity in vascular dementia (VD) rats, and explore the mechanisms of acupuncture in regulating MG activation and improving remyelination, so as to ameliorate VD.
METHODS:
Among 38 SD rats meeting experimental requirements, 9 rats were randomly assigned to a sham-operation group, and the remaining rats underwent permanent bilateral common carotid artery ligation to establish VD model. Eighteen successfully modeled rats were randomly divided into a model group and an electroacupuncture (EA) group, with 9 rats in each one. In the EA group, EA was performed at "olfactory three needles" ("Yintang" [GV24+] and bilateral "Yingxiang" [LI20]), at disperse-dense wave, the frequency of 2 Hz/15 Hz and the current intensity of 1 mA, for 15 min per intervention, once daily. One course was composed of 7 days, and 2 courses were required, with the interval of 2 days. The novel object recognition test was employed to assess the cognition of rats, and the Morris water maze was adopted to observe learning and memory abilities. Luxol fast blue (LFB) staining was performed to evaluate myelin sheath loss in the hippocampus, the Western blot was used to detect the protein expression of triggering receptor expressed on myeloid cells-2 (TREM2) and proteolipid protein (PLP) in the hippocampus; and the immunofluorescence staining was used to detect the positive expression of PLP, sex determining region Y-box 10 (SOX10), ionized calcium binding adaptor molecule 1 (Iba1)+ TREM2+ and Iba1+ lysosome-associated membrane protein 1 (LAMP1)+ in the hippocampus.
RESULTS:
Compared with the sham-operation group, the rats in the model group exhibited the prolonged escape latency on day 3 and 4 (P<0.05, P<0.01), the increase of the total distance traveling (P<0.01) and the decrease of the recognition index (RI) and platform crossing frequency (P<0.01). Compared with the model group, the rats in the EA group showed the shortened escape latency on day 3 and 4 (P<0.05), the decrease of total distance traveling (P<0.01) and the increase of RI and platform crossing frequency (P<0.05, P<0.01). When compared with the sham-operation group, the rats of the model group presented uneven staining, sparse arrangement of myelin sheath fibers, unclear contours, and prominent vacuole-like changes in the hippocampal CA1 region. When compared with the model group, the EA group showed more dense staining, the increase of myelin sheath fibers with more orderly alignment, and fewer vacuolar changes in the hippocampal CA1 region. Compared with the sham-operation group, the model group exhibited the increase of TREM2 protein expression and the decrease of PLP protein expression in the hippocampus (P<0.01), whereas the EA group showed the up-regulation of TREM2 and PLP protein expression when compared with the model group (P<0.01, P<0.05). The positive expression of the hippocampal PLP, SOX10, and Iba1+LAMP1+ in the model group was reduced in comparison with the sham-operation group (P<0.05, P<0.01), and the positive expression of Iba1+ TREM2+ was elevated (P<0.05). In the EA group, the positive expression of PLP, SOX10, Iba1+TREM2+, and Iba1+ LAMP1+ was higher compared with that in the model group (P<0.05, P<0.01).
CONCLUSION
"Olfactory three needles" can improve the learning and memory, and cognitive functions of VD rats, and its mechanism may be associated with the up-regulation of TREM2 and LAMP1 to adjust MG phagocytic activity and intracellular degradation, and promote remyelination.
Animals
;
Dementia, Vascular/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Microglia/metabolism*
;
Male
;
Acupuncture Therapy/instrumentation*
;
Acupuncture Points
;
Humans
;
Remyelination
;
Memory
;
Hippocampus/cytology*
;
Cognition
;
Electroacupuncture
;
Needles
5.Research progress on predicting radiation pneumonia based on four-dimensional computed tomography ventilation imaging in lung cancer radiotherapy.
Yuyu LIU ; Li WANG ; Yanping GAO ; Xiang PAN ; Meifang YUAN ; Bingbing HE ; Han BAI ; Wenbing LYU
Journal of Biomedical Engineering 2025;42(4):863-870
Lung cancer is the leading cause of cancer-related deaths worldwide. Radiation pneumonitis is a major complication in lung cancer radiotherapy. Four-dimensional computed tomography (4DCT) imaging provides dynamic ventilation information, which is valuable for lung function assessment and radiation pneumonitis prevention. Many methods have been developed to calculate lung ventilation from 4DCT, but a systematic comparison is lacking. Prediction of radiation pneumonitis using 4DCT-based ventilation is still in an early stage, and no comprehensive review exists. This paper presented the first systematic comparison of functional lung ventilation algorithms based on 4DCT over the past 15 years, highlighting their clinical value and limitations. It then reviewed multimodal approaches combining 4DCT ventilation imaging, dose metrics, and clinical data for radiation pneumonitis prediction. Finally, it summarized current research and future directions of 4DCT in lung cancer radiotherapy, offering insights for clinical practice and further studies.
Humans
;
Lung Neoplasms/diagnostic imaging*
;
Four-Dimensional Computed Tomography/methods*
;
Radiation Pneumonitis/etiology*
;
Algorithms
;
Lung/radiation effects*
;
Pulmonary Ventilation
6.Exploration on the Mechanism of Hydroxyl Safflower Flavin A in the Treatment of Sepsis-induced Liver Injury Based on Metabolomics and Network Pharmacology
Shifan YAN ; Bingbing PAN ; Ting YU ; Changmiao HOU ; Yu JIANG ; Fang CHEN ; Jingjing WANG ; Yanjuan LIU ; Yimin ZHU
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(2):130-137
Objective To explore the mechanism of hydroxyl safflower flavin A(HSYA)in the treatment of sepsis-induced liver injury by using metabolomics and network pharmacology.Methods A total of 50 male C57BL/6 mice were randomly divided into sham-operation group(10 mice),sepsis group(20 mice)and HSYA group(20 mice).Cecal ligation and puncture was conducted to establish the sepsis-induced liver injury mouse model.The mice in HSYA group were subcutaneously injected with HSYA after 2 hours of modeling.The content of serum inflammatory factors and liver function were detected,and the pathological changes of liver tissue were observed with HE staining,UPLC-Q-TOF-MS metabolomics was used to analyze liver tissue,screening for differential metabolites using multivariate statistical methods,network pharmacology was used to predict potential targets for HSYA treatment of sepsis-induced liver injury,and conduct GO and KEGG pathway enrichment analysis on potential targets,Metabo Analyst 5.0 database was used to match differential metabolites and potential targets between the model group and HSYA group,a targets metabolite-metabolism pathway network was constructed.AutoDock Vina software was used to perform molecular docking between HSYA and core genes,and finally RT-qPCR was used to verify the expression of core genes.Results HSYA can reduce the contents of IL-6,IL-1β and TNF-α in serum,restore liver function,and alleviate the morphological alternation in liver induced by sepsis.A total of 26 differential metabolites identified by metabolomics were screened out,including flufenamic acid,cryptolepine,opthalmic acid,fenpropathrin etc.,which were mainly involved in 5 metabolic pathways such as biosynthesis of unsaturated fatty acids and alpha-linolenic acid metabolism.Network pharmacology identified 81 potential targets,2 735 items enriched in GO and 124 signaling pathways enriched in KEGG;a total of 5 differential metabolites were matched for joint analysis,corresponding to 14 targets including IL1B,STAT3,PTGS2,TP53,etc.,involved in the regulation of metabolic disorders in sepsis-induced liver injury by HSYA.Molecular docking results showed that HSYA had good binding activity to IL1B,STAT3,PTGS2 and TP53 targets.RT-qPCR results showed that HSYA could inhibit the expressions of IL1B,STAT3 and PTGS2 in liver tissue.Conclusions HSYA may inhibit the release of inflammatory cytokines,maintain metabolic homeostasis,and alleviate sepsis-induced liver injury through modulating the expressions of IL1B,STAT3,and PTGS2.
7.Ultrasonic evaluation of fetal cerebral sulci and gyrus development in pregnant women with gestational diabetes mellitus
Xiaolin ZHANG ; Zhaoling ZHU ; Ruili WANG ; Yuan GAO ; Bingbing LIU ; Liangjie GUO ; Jianjun YUAN ; Jingge ZHAO
Chinese Journal of Ultrasonography 2024;33(1):36-41
Objective:To evaluate the development of fetal cerebral sulci and gyrus and the blood perfusion in pregnant women with gestational diabetes mellitus(GDM) by ultrasound.Methods:A total of 1 540 pregnant women with 28-34 weeks of pregnancy who underwent systematic screening in Henan Provincial People′s Hospital from January 2022 to October 2022 were prospectively selected, 100 pregnant women with GDM were selected as the GDM group. According to the effect of blood glucose control, the GDM group was divided into 2 groups: the satisfied control group (GDM group 1), and the dissatisfied control group (GDM group 2), with 50 cases in each group. At the same period, 50 healthy pregnant women at 28-34 weeks of gestation were enrolled as the control group. The differences of the sylvian fissure, parietooccipital sulci, calcarine sulci and cinguli sulci among the 3 groups were statistically analyzed. And the correlations between the deep of the brain cerebral sulci and gyrus and controlled blood glucose levels were evaluated. The umbilical artery pulsation index(UAPI), middle cerebral artery pulsation index(MCAPI) and ductus venosus pulsation index(DVPI) among the 3 groups were compared, and the differences in fetal blood perfusion among the 3 groups were evaluated.Results:There were no significant differences in the depths of the sylvian fissure, parietooccipital sulci, calcarine sulci and cinguli sulci between the control group and the GDM group 1 (all P>0.05), and they were larger than those of the GDM group 2 (all P<0.05). The depths of lateral fissure, parieto-occipital sulcus, cingulate sulcus and calcarine sulcus were negatively correlated with fasting blood glucose, 1 h and 2 h postprandial blood glucose (all P<0.05). There were no significant differences in MCAPI, UAPI and DVPI between the control group and GDM1 group (all P>0.05). The MCAPI in GDM 2 group was lower than that in the control group and GDM 1 group, and the UAPI and DVPI values were higher than those in the control group and GDM1 group(all P<0.05). Conclusions:The maturity of fetal cerebral sulci and gyrus in GDM pregnant women is related to the blood glucose control of pregnant women. The change of blood perfusion caused by persistent hyperglycemia in pregnant women and intrauterine hypoxia may cause the development retardation of cerebral sulci and gyrus.
8.Mechanisms of Fufang Biejia Ruangan Pills Against Alcoholic Liver Disease via Regulating Liver-brain Dialogue Mediated by HMGB1-BDNF Axis
Yudong LIU ; Xiangying YAN ; Tao LI ; Chu ZHANG ; Bingbing CAI ; Zhaochen MA ; Na LIN ; Yanqiong ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(23):214-223
ObjectiveTo systematically and objectively characterize the pharmacological effects of Fufang Biejia Ruangan pills (FBRP) in the intervention of alcoholic liver disease (ALD) using acute and chronic ALD mouse models and to elucidate its molecular mechanisms. MethodFifty SPF-grade male BALB/c mice were randomly divided into the normal group, model group, and FBRP low-, medium-, and high-dose groups (9.6, 19.2, 38.4 mg·kg-1). Except for the normal group, the remaining groups were given 56° white wine by gavage to establish the acute ALD model, with samples collected after 4 weeks. Thirty SPF-grade male C57BL/6N mice were randomly divided into the normal group, model group, and FBRP medium-dose group (19.2 mg·kg-1). The chronic ALD mouse model was established using the Lieber-DeCarli method over a 10-week period. Inflammatory markers in liver tissues were assessed using hematoxylin-eosin (HE), Sirius Red, oil red O staining, and enzyme-linked immunosorbent assay (ELISA). Intoxication behaviors of each group were objectively evaluated through sobering-up time, net-catching, and pole-climbing tests. Further bioinformatics analyses based on clinical transcriptomic data were conducted to identify key targets and molecular mechanisms of FBRP in alleviating ALD through liver-brain dialogue, with experimental validation by ELISA, Western blot, and immunohistochemical staining. ResultCompared with the normal group, the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in liver tissues of mice in the acute and chronic ALD model groups were significantly increased (P<0.05). Compared with the model group, the levels of AST and ALT in liver tissue of mice in FBRP groups were significantly decreased (P<0.05). Compared with the normal group, the time of grasping the net and climbing the pole in the acute ALD model group was significantly decreased within 4 weeks (P<0.01). Compared with the model group, the grasping and climbing time of FBRP high dose groups increased significantly within 4 weeks (P<0.05). Compared with the normal group, the expression of high mobility group protein B1 (HMGB1) protein in liver tissue and prefrontal lobe tissue of mice in the chronic ALD model group was significantly increased (P<0.01). Compared with the model group, the expression of HMGB1 protein in FBRP medium dose group was significantly decreased (P<0.05,P<0.01). Compared with the normal group, the expression of brain-derived neurotrophic factor (BDNF) protein and the release of γ-aminobutyric acid (GABA) in the prefrontal cortex of the model group were significantly decreased (P<0.01). Compared with the model group, the expression of BDNF protein and the release of GABA in the FBRP medium dose group were significantly increased (P<0.05). ConclusionThis study revealed that FBRP improved key pathological changes in ALD by modulating liver-brain dialogue mediated by the HMGB1-BDNF axis. These findings provide experimental evidence for the clinical use of FBRP in treating ALD and offer new insights for the development of ALD therapeutic agents.
9.Identification of in Vitro and in vivo Chemical Constituents of Ruyi Zhenbaowan Based on UHPLC-Q Exactive Orbitrap HRMS
Kedian CHEN ; Zhaochen MA ; Bingbing CAI ; Ying LIU ; Yudong LIU ; Tao LI ; Mingzhu XU ; Haiping WANG ; Na LIN ; Yanqiong ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(24):78-84
ObjectiveTo identify the chemical constituents of Ruyi Zhenbaowan in vitro and in vivo. MethodThe chemical constituents of Ruyi Zhenbaowan were identified based on UHPLC-Q Exactive Orbitrap HRMS. A total of 12 male SD rats were randomized into two groups: control (pure water) and Ruyi Zhenbaowan (1.8 g·kg-1). The rats were administrated with the suspension of Ruyi Zhenbaowan or pure water by gavage. After 1.5 h, the plasma and cerebrospinal fluid were collected. Chromatographic separation was performed on a Waters ACQUITY UPLC BEH C18 column (2.1 mm × 150 mm, 1.7 μm) with a mixture of 0.1% formic acid aqueous solution (A) and acetonitrile (B) as the mobile phase. Gradient elution was carried out according to the procedure of 0~15 min,97%~80%A;15~30 min ,80%~60%A;30~40 min,60%~30%A;40~45 min,30%~5%A. The ion source was electrospray ionization, and scan range was m/z 100-1 500. The prototype components and the components in the plasma and cerebrospinal fluid were analyzed qualitatively by scanning in positive and negative ion modes and identified by comparison with the data in published literature and the information of standard substances. ResultA total of 126 chemical constituents were identified from the 80% methanol solution of Ruyi Zhenbaowan, and 14 and 7 prototype constituents were detected in the plasma and the cerebrospinal fluid, respectively. In addition, the fragmentation rules of apigenin, apigenin-7-O-glucuronide, galangin, liquiritin, piperine, glycyrrhizic acid, eugenol, gallic acid, and cholic acid were deduced. ConclusionThis study achieved rapid multicomponent characterization and identification of Ruyi Zhenbaowan in vitro and in vivo, providing theoretical support for exploring active substances and performing quality control.l.
10.A proteomic landscape of pharmacologic perturbations for functional relevance
Zhiwei LIU ; Shangwen JIANG ; Bingbing HAO ; Shuyu XIE ; Yingluo LIU ; Yuqi HUANG ; Heng XU ; Cheng LUO ; Min HUANG ; Minjia TAN ; Jun-Yu XU
Journal of Pharmaceutical Analysis 2024;14(1):128-139
Pharmacological perturbation studies based on protein-level signatures are fundamental for drug dis-covery.In the present study,we used a mass spectrometry(MS)-based proteomic platform to profile the whole proteome of the breast cancer MCF7 cell line under stress induced by 78 bioactive compounds.The integrated analysis of perturbed signal abundance revealed the connectivity between phenotypic behaviors and molecular features in cancer cells.Our data showed functional relevance in exploring the novel pharmacological activity of phenolic xanthohumol,as well as the noncanonical targets of clinically approved tamoxifen,lovastatin,and their derivatives.Furthermore,the rational design of synergistic inhibition using a combination of histone methyltransferase and topoisomerase was identified based on their complementary drug fingerprints.This study provides rich resources for the proteomic landscape of drug responses for precision therapeutic medicine.


Result Analysis
Print
Save
E-mail