1.Conditioned medium of osteoclasts promotes angiogenesis in endothelial cells after lactic acid intervention
Hongli HUANG ; Wen NIE ; Yuying MAI ; Yuan QIN ; Hongbing LIAO
Chinese Journal of Tissue Engineering Research 2025;29(11):2210-2217
BACKGROUND:As a degradable scaffold material for bone tissue engineering,lactic acid is widely used in tissue regeneration and repair research,and plays an important role in promoting tissue healing,new bone formation and angiogenesis. OBJECTIVE:To observe the effect of lactic acid degradation products on osteoclasts and to investigate the effects of lactic-interfered osteoclast conditioned medium on the proliferation,migration and tube-forming capacity of human umbilical vein endothelial cells. METHODS:(1)The mouse monocyte macrophage cell line RAW264.7 at logarithmic growth period was selected,and adherent cells were cultured in the osteoclast induction medium(DMEM medium with nuclear factor-κB receptor-activating factor ligand and 10%fetal bovine serum)containing different concentrations of lactic acid(0,5,10,20 mmol/L).After 5 days of culture,tartrate-resistant acid phosphatase staining and cytoskeletal fibrillar actin staining were conducted.After 24 hours of culture,RT-PCR was used to detect the mRNA expression of tartrate-resistant acid phosphatase 5.(2)RAW264.7 cells at logarithmic growth period were selected and adherent cells were divided into two groups.Control group was cultured in the osteoclast induction medium,while experimental group was cultured in the osteoclast induction medium containing 10 mmol/L lactic acid.After 5 days of culture,the medium in each group was removed and the cells in the two groups were cultured in the serum-free DMEM medium for another 24 hours.Cell supernatant was then collected and used as the conditioned medium after mixed with an equal volume of DMEM medium containing 10%fetal bovine serum.Human umbilical vein endothelial cells at the logarithmic growth phase were taken and separately co-cultured with the conditioned medium of the control and experimental groups.The proliferation,migration and tube-forming ability of human umbilical vein endothelial cells were observed by cell counting kit-8 assay,migration assay,scratch assay and tube-forming assay.The mRNA and protein expression of angiogenesis-related genes and proteins were observed by RT-PCR and western blot. RESULTS AND CONCLUSION:Tartrate-resistant acid phosphatase staining and cytoskeletal fibrillar actin staining showed that 5 and 10 mmol/L lactic acid promoted osteoclastic differentiation of RAW264.7 cells and the promoting effect of 10 mmol/L lactate was more significant.RT-PCR results showed that the expression of tartrate-resistant acid phosphatase-5 mRNA of osteoclast-related genes was the highest when the lactic acid concentration was 5,10,and 20 mmol/L(P<0.05),especially 10 mmol/L.Compared with the control group,the proliferation,migration and tube-forming abilities of human umbilical vein endothelial cells were significantly increased in the experimental group(P<0.05).Compared with the control group,the expression levels of vascular endothelial growth factor and angiogenin 1 mRNA and protein were increased in the experimental group(P<0.05).To conclude,lactate-induced osteoclast conditioned medium could promote the angiogenesis of endothelial cells,and the mechanism may be related to the promotion of the expression of vascular endothelial growth factor and angiogenin 1.
2.Downregulation of LINC00638 contributes to the pathogenesis of rheumatoid arthritis-associated interstitial lung disease via inhibiting the Nrf2/ARE signaling pathway
Zhuojun LIAO ; Naiwang TANG ; Jiahui CHEN ; Xueying SUN ; Jiamin LU ; Qin WU ; Ronghuan YU ; Ying ZHOU
Chinese Journal of Clinical Medicine 2025;32(3):421-431
Objective To identify long non-coding RNA (lncRNA) associated with rheumatoid arthritis-associated interstitial lung disease (RA-ILD) and investigate their mechanisms. Methods Peripheral blood samples were collected from RA-ILD patients (n=3), RA patients without lung involvement (n=3), and healthy controls (n=3). Next-generation sequencing was performed to screen differentially expressed lncRNA. A human fibrotic lung cell model was established by inducing the MRC-5 cell line with transforming growth factor-β (TGF-β). Following siRNA-mediated knockdown of target genes, changes in inflammatory and oxidative stress-related genes were analyzed via real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Western blotting and dual-luciferase reporter (DLR) assays were used to validate protein expression, ubiquitination levels, and nuclear translocation of oxidative stress regulators, and antioxidant response element (ARE) transcriptional activity. Rescue experiments were conducted to confirm the role of target lncRNA in oxidative stress and inflammation in fibrotic lung cells. Results High-throughput sequencing revealed significant downregulation of LINC00638 in RA-ILD patients. Knockdown of LINC00638 markedly reduced transcriptional levels of interleukin (IL)-4, nuclear factor erythroid-2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and superoxide dismutase 2 (SOD2), while increasing IL-6, IL-1β, interferon-γ (IFN-γ), and reactive oxygen species (ROS) levels. Furthermore, LINC00638 knockdown decreased Nrf2 protein expression, increased its ubiquitination, reduced nuclear translocation, and suppressed ARE transcriptional activity. In MRC-5 cells, LINC00638 knockdown combined with N-acetylcysteine treatment restored Nrf2 and HO-1 levels while reducing IL-6 expression. Conclusions LINC00638 suppresses inflammatory responses in RA-ILD by activating the Nrf2/ARE antioxidant signaling pathway, suggesting its potential as a therapeutic target for diagnosis and treatment.
3.Association of mitochondrial DNA copy number with mild to moderate cognitive impairment and its mediating role in type 2 diabetes mellitus
Tong LIU ; Chazhen LIU ; Peiyun ZHU ; Ping LIAO ; Xin HE ; Jian QI ; Qin YAN ; Yuan LU ; Wenjing WANG
Shanghai Journal of Preventive Medicine 2025;37(7):581-585
ObjectiveTo investigate the relationship between mitochondrial DNA copy number (mtDNAcn) and cognitive dysfunction, and its mediating role between type 2 diabetes mellitus (T2DM) and cognitive dysfunction. MethodsA case-control study was conducted from May 2019 to April 2021 at the Shanghai Yangpu District Central Hospital, China. A total of 193 subjects were recruited and divided into two groups based on the Montreal Cognitive Assessment (MoCA): normal control (NC) group (n=95) and cognitive impairment group (n=98). The prevalence of T2DM was determined on the basis of medical history, while mtDNAcn in peripheral blood samples was quantified using realtime fluorescent quantitative polymerase chain reaction. ResultsUnivariate analyses revealed that the mean mtDNAcn in the cognitive impairment group was 0.76±0.37, significantly lower than that in the NC group (1.06±0.45) (P<0.05). Logistic regression analyses showed that higher mtDNAcn was associated with a reduced risk of cognitive impairment (OR=0.315, 95%CI: 0.125‒0.795). Additionaly, a statistically significant positive correlation was observed between mtDNAcn and the total MoCA score (r=0.381, P<0.01). Morever, T2DM history (OR=2.741, 95%CI: 1.002‒7.497) and elevated glycosylated hemoglobin (HbA1c) levels (OR=1.796, 95%CI: 1.190‒2.711) were identified as risk factors for cognitive impairment. Mediation analyses indicated that mtDNAcn served as a mediator between T2DM/HbA1c and the risk of cognitive impairment, with proportions of mediating effect of 9.04% and 9.18%, respectively. ConclusionPatients with mild and moderate cognitive impairment have significantly lower mtDNAcn than those with normal cognitive function. Reduced mtDNAcn is an influencing factor for cognitive dysfunction and may play a mediating role in the association between T2DM and mild to moderate cognitive impairment.
4.Effects of respiratory training combined with swallowing function training on infants with bronchopulmonary dysplasia at a corrected gestational age of 6 months: a prospective study.
Ya-Qin DUAN ; Zhen-Yu LIAO ; Ji-Hong HU ; Shun-Qiu RUAN
Chinese Journal of Contemporary Pediatrics 2025;27(4):420-424
OBJECTIVES:
To study the effects of early respiratory training combined with swallowing function training on physical development and neurodevelopment at a corrected gestational age of 6 months in infants with bronchopulmonary dysplasia (BPD).
METHODS:
A total of 69 BPD infants who could not be fed completely orally were prospectively selected from the Department of Neonatology of Hunan Children's Hospital between January 2018 and January 2021. Based on a random number table, the infants were divided into a conventional group (35 cases) and a training group (34 cases) (with 8 cases lost to follow-up; the final follow-up included 31 cases in the training group and 30 cases in the conventional group). Both groups received routine clinical treatment and care, while the training group additionally received respiratory and swallowing function training until the infants could independently feed orally. The weight, length, Gesell Developmental Schedule (GDS) results, readmission rate, and multiple readmission rate (two or more admissions) were compared between the two groups at a corrected age of 6 months.
RESULTS:
At corrected gestational age of 6 months, the training group had higher weight, length, and GDS scores in personal-social, language, gross motor, fine motor, and adaptive development compared to the conventional group (P<0.05). The readmission rate and multiple readmission rate were lower in the training group compared to the conventional group (P<0.05).
CONCLUSIONS
Early respiratory training combined with swallowing function training for BPD infants in a neonatal intensive care unit setting helps improve physical and neurological development and reduces the readmission rate.
Humans
;
Bronchopulmonary Dysplasia/physiopathology*
;
Prospective Studies
;
Male
;
Female
;
Infant
;
Deglutition/physiology*
;
Gestational Age
;
Infant, Newborn
;
Breathing Exercises
;
Child Development
5.Mechanism of Reactive Oxygen/Nitrogen Species in Liver Ischemia-Reperfusion Injury and Preventive Effect of Chinese Medicine.
Lei GAO ; Yun-Jia LI ; Jia-Min ZHAO ; Yu-Xin LIAO ; Meng-Chen QIN ; Jun-Jie LI ; Hao SHI ; Nai-Kei WONG ; Zhi-Ping LYU ; Jian-Gang SHEN
Chinese journal of integrative medicine 2025;31(5):462-473
Liver ischemia-reperfusion injury (LIRI) is a pathological process involving multiple injury factors and cell types, with different stages. Currently, protective drugs targeting a single condition are limited in efficacy, and interventions on immune cells will also be accompanied by a series of side effects. In the current bottleneck research stage, the multi-target and obvious clinical efficacy of Chinese medicine (CM) is expected to become a breakthrough point in the research and development of new drugs. In this review, we summarize the roles of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in various stages of hepatic ischemia-reperfusion and on various types of cells. Combined with the current research progress in reducing ROS/RNS with CM, new therapies and mechanisms for the treatment of hepatic ischemia-reperfusion are discussed.
Reperfusion Injury/drug therapy*
;
Reactive Oxygen Species/metabolism*
;
Reactive Nitrogen Species/metabolism*
;
Humans
;
Liver/drug effects*
;
Animals
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/pharmacology*
6.A chemotherapy nano-booster unlocks wider therapeutic window for prostate cancer treatment.
Rui LIAO ; Yuequan WANG ; Ziqi LIN ; Yuting WANG ; Hongyuan ZHANG ; Qin CHEN ; Shenwu ZHANG ; Jin SUN ; Zhonggui HE ; Cong LUO
Acta Pharmaceutica Sinica B 2025;15(6):3273-3290
Clinical chemotherapy for prostate cancer is still compromised by high treatment thresholds and severe off-target toxicity of drugs. Given the limited progress in improving therapeutic outcomes and reducing toxicity with the existing toolbox, efforts to broaden the chemotherapeutic window are highly desired. Here, we discover that gossypol (GSP, a natural compound) dramatically enhances the chemosensitivity of cabazitaxel (CTX), even at previously ineffective concentrations. Based on this interesting finding, we exploit a carrier-free chemotherapeutic nano-booster for prostate cancer treatment, which is molecularly co-assembled by GSP and cabazitaxel (CTX). GSP not only readily forms nanoassembly with CTX, but also functions as a chemotherapeutic enhancer that unlocks an ultra-low-dose chemotherapeutic window. Not only that, precise dual-drug nanoassembly confers CTX a significantly larger maximum tolerable dose. As expected, the nano-booster exerts striking therapeutic benefits in mouse prostate tumor xenograft models. This study advances chemotherapeutic window expansion and self-sensitized chemotherapy toward clinical applicability.
7.Application of artificial intelligence in laboratory hematology: Advances, challenges, and prospects.
Hongyan LIAO ; Feng ZHANG ; Fengyu CHEN ; Yifei LI ; Yanrui SUN ; Darcée D SLOBODA ; Qin ZHENG ; Binwu YING ; Tony HU
Acta Pharmaceutica Sinica B 2025;15(11):5702-5733
The diagnosis of hematological disorders is currently established from the combined results of different tests, including those assessing morphology (M), immunophenotype (I), cytogenetics (C), and molecular biology (M) (collectively known as the MICM classification). In this workflow, most of the results are interpreted manually (i.e., by a human, without automation), which is expertise-dependent, labor-intensive, time-consuming, and with inherent interobserver variability. Also, with advances in instruments and technologies, the data is gaining higher dimensionality and throughput, making additional challenges for manual analysis. Recently, artificial intelligence (AI) has emerged as a promising tool in clinical hematology to ensure timely diagnosis, precise risk stratification, and treatment success. In this review, we summarize the current advances, limitations, and challenges of AI models and raise potential strategies for improving their performance in each sector of the MICM pipeline. Finally, we share perspectives, highlight future directions, and call for extensive interdisciplinary cooperation to perfect AI with wise human-level strategies and promote its integration into the clinical workflow.
8.(±)-Talapyrones A-F: six pairs of dimeric polyketide enantiomers with unusual 6/6/6 and 6/6/6/5 ring systems from Talaromycesadpressus.
Meijia ZHENG ; Xinyi ZHAO ; Chenxi ZHOU ; Hong LIAO ; Qin LI ; Yuling LU ; Bingbing DAI ; Weiguang SUN ; Ying YE ; Chunmei CHEN ; Yonghui ZHANG ; Hucheng ZHU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):932-937
(±)-Talapyrones A-F (1-6), six pairs of dimeric polyketide enantiomers featuring unusual 6/6/6 and 6/6/6/5 ring systems, were isolated from the fungus Talaromyces adpressus. Their structures were determined by spectroscopic analysis and HR-ESI-MS data, and their absolute configurations were elucidated using a modified Mosher's method and electronic circular dichroism (ECD) calculations. (±)-Talapyrones A-F (1-6) possess a 6/6/6 tricyclic skeleton, presumably formed through a Michael addition reaction between one molecule of α-pyrone derivative and one molecule of C8 poly-β-keto chain. In addition, compounds 2/3 and 4/5 are two pairs of C-18 epimers, respectively. Putative biosynthetic pathways of 1-6 were discussed.
Polyketides/isolation & purification*
;
Talaromyces/chemistry*
;
Stereoisomerism
;
Molecular Structure
;
Circular Dichroism
;
Pyrones/chemistry*
9.Research progress on clot waveform analysis in thrombotic diseases
Jingsong BAI ; Han QIN ; Guo LI ; Jian LIAO ; Ying XU
Chinese Journal of Blood Transfusion 2025;38(10):1427-1434
In recent years, with the continuous advancement of related research, the clinical value of clot waveform analysis (CWA) in the diagnosis and management of thrombotic diseases has become increasingly prominent. As a dynamic coagulation monitoring technology based on optical principles, CWA overcomes the limitations of traditional coagulation tests (e.g., APTT, PT), which rely on single time-point parameters, in identifying hypercoagulable states, predicting thrombotic risk, and monitoring anticoagulant efficacy. By analyzing the kinetic profiles of the coagulation cascade, CWA provides multidimensional insights. This article elucidates the theoretical basis and principles of CWA, systematically reviews its applications in arterial/venous thrombosis, other hypercoagulability-related disorders, and anticoagulation therapy monitoring, and synthesizes recent advances of CWA for thrombotic diseases. Specifically, multiple studies demonstrate that CWA-APTT parameters (e.g., peak height Min1, Min2, Delta) can sensitively detect hypercoagulability. Combining CWA with the Padua score significantly enhances the predictive power for venous thromboembolism (VTE) risk assessment. CWA shows clinical utility in evaluating hypercoagulability in patients with acute myocardial infarction (AMI) and acute cerebral infarction (ACI), where parameters such as Min1, Min2, and Max2 exhibit greater sensitivity than conventional APTT. These metrics may predict AMI complications and guide clinical management. Additionally, CWA demonstrates value in diverse scenarios including pregnancy, inflammation-associated hypercoagulability (e.g., COVID-19, Kawasaki disease), and rare thrombotic conditions (e.g., chronic spontaneous urticaria). Beyond diagnostic and risk-stratification advantages, CWA serves as a novel tool for personalized anticoagulation monitoring. Its derivative technology, clot-fibrinolysis waveform analysis (CFWA), extends applications to fibrinolysis assessment—aiding in identifying coagulation status in deep vein thrombosis (DVT) patients, tracking coagulation/fibrinolysis dynamics in COVID-19, and evaluating efficacy of anticoagulant/antifibrinolytic therapies. Nevertheless, despite its unique strengths, challenges such as device dependency, insufficient standardization, and heterogeneity in parameter interpretation hinder widespread clinical adoption, necessitating further investigation. Future directions include establishing multidimensional thrombotic risk assessment systems integrating CWA and developing AI-powered automated CWA analysis platforms to enhance clinical accessibility.
10.Clinical features and genetic analysis of 17 Chinese pedigrees affected with X-linked intellectual disability
Yan LI ; Litao QIN ; Ke YANG ; Xin CHEN ; Hongjie ZHU ; Luya MI ; Yaoping WANG ; Xinrui MA ; Shixiu LIAO
Chinese Journal of Medical Genetics 2024;41(5):533-539
Objective:To analyze the clinical features and genetic etiology of 17 Chinese pedigrees affected with X-linked intellectual disability (XLID).Methods:Seventeen pedigrees affected with unexplained intellectual disability which had presented at Henan Provincial People′s Hospital from May 2021 to May 2023 were selected as the study subjects. Clinical data of the probands and their pedigree members were collected. Trio-whole exome sequencing (Trio-WES), Sanger sequencing and X chromosome inactivation (XCI) analysis were carried out. Pathogenicity of candidate variants was predicted based on the guidelines from the American College of Medical Genetics and Genomics and co-segregation analysis.Results:The 17 probands, including 9 males and 8 females with an age ranging from 0.6 to 8 years old, had all shown mental retardation and developmental delay. Fourteen variants were detected by genetic testing, which included 4 pathogenic variants ( MECP2: c. 502C>T, MECP2: c. 916C>T/c.806delG, IQSEC2: c.1417G>T), 4 likely pathogenic variants ( MECP2: c. 1157_1197del/c.925C>T, KDM5C: c. 2128A>T, SLC6A8: c. 1631C>T) and 6 variants of uncertain significance ( KLHL15: c. 26G>C, PAK3: c. 970A>G/c.1520G>A, GRIA3: c. 2153C>G, TAF1: c. 2233T>G, HUWE1: c. 10301T>A). The PAK3: c.970A>G, GRIA3: c. 2153C>G and TAF1: c. 2233T>G variants were considered as the genetic etiology for pedigrees 12, 14 and 15 by co-segregation analysis, respectively. The proband of pedigree 13 was found to have non-random XCI (81: 19). Therefore, the PAK3: c. 1520G>A variant may underlie its pathogenesis. Conclusion:Trio-WES has attained genetic diagnosis for the 17 XLID pedigrees. Sanger sequencing and XCI assay can provide auxiliary tests for the diagnosis of XLID.

Result Analysis
Print
Save
E-mail