1.Deep Learning-Based Computer-Aided Diagnosis in Coronary Artery Calcium-Scoring CT for Pulmonary Nodule Detection: A Preliminary Study
Seung Yun LEE ; Ji Weon LEE ; Jung Im JUNG ; Kyunghwa HAN ; Suyon CHANG
Yonsei Medical Journal 2025;66(4):240-248
Purpose:
To evaluate the feasibility and utility of deep learning-based computer-aided diagnosis (DL-CAD) for the detection of pulmonary nodules on coronary artery calcium (CAC)-scoring computed tomography (CT).
Materials and Methods:
This retrospective study included 273 patients (aged 63.9±13.2 years; 129 men) who underwent CACscoring CT. A DL-CAD system based on thin-section images was used for pulmonary nodule detection, and two independent junior readers reviewed the standard CAC-scoring CT scans with and without referencing DL-CAD results. A reference standard was established through the consensus of two experienced radiologists. Sensitivity, positive predictive value, and F1-score were assessed on a per-nodule and per-patient basis. The patients’ medical records were monitored until November 2023.
Results:
A total of 269 nodules were identified in 129 patients. With DL-CAD assistance, the readers’ sensitivity significantly improved (65% vs. 80% for reader 1; 82% vs. 86% for reader 2; all p<0.001), without a notable increase in the number of false-positives per case (0.11 vs. 0.13, p=0.078 for reader 1; 0.11 vs. 0.11, p>0.999 for reader 2). Per-patient analysis also enhanced sensitivity with DL-CAD assistance (73% vs. 84%, p<0.001 for reader 1; 89% vs. 91%, p=0.250 for reader 2). During follow-up, lung cancer was diagnosed in four patients (1.5%). Among them, two had lesions detected on CAC-scoring CT, both of which were successfully identified by DL-CAD.
Conclusion
DL-CAD based on thin-section images can assist less experienced readers in detecting pulmonary nodules on CACscoring CT scans, improving detection sensitivity without significantly increasing false-positives.
2.Prospective Evaluation of Various Ultrasound Parameters for Assessing Renal Allograft Rejection Subtypes: Elasticity and Dispersion as Diagnostic Tools
Yeji KWON ; Jongjin YOON ; Dae Chul JUNG ; Young Taik OH ; Kyunghwa HAN ; Minsun JUNG ; Byung Chul KANG
Yonsei Medical Journal 2025;66(4):249-258
Purpose:
Renal allograft rejection, either acute or chronic, is prevalent among many recipients. This study aimed to identify multiple Doppler ultrasound parameters for predicting renal allograft rejection.
Materials and Methods:
Between November 2021 and April 2022, 61 renal allograft recipients were studied prospectively after excluding two patients with dual transplants and seven with hydronephrosis. The analysis excluded 11 cases (10 due to missing Doppler data or pathology reports and one due to a high interquartile range/median dispersion value), resulting in a final analysis of 50 patients. Clinical characteristics, color Doppler imaging, superb microvascular imaging, and shear-wave imaging parameters were assessed by three experienced genitourinary radiologists. The Banff classification of the biopsy tissue served as the reference standard. Univariable and multivariable logistic regression, contingency matrices, and multiple machine-learning models were employed to estimate the associations.
Results:
Fifty kidney transplant recipients (mean age, 53.26±8.86 years; 29 men) were evaluated. Elasticity (≤14.8 kPa) demonstrated significant associations for predicting the combination of (borderline) T cell-mediated rejection (TCMR) categories (Banff categories 3 and 4) (p=0.006) and yielded equal or higher area under the receiver operating characteristics curve (AUC) values compared to various classifiers. Dispersion (>15.0 m/s/kHz) was the only significant factor for predicting the combination of nonTCMR categories (Banff categories 2, 5, and 6) (p=0.026) and showed equal or higher AUC values than multiple machine learning classifiers.
Conclusion
Elasticity (≤14.8 kPa) showed a significant association with the combination of (borderline) TCMR categories, whereas dispersion (>15.0 m/s/kHz) was significantly associated with the combination of non-TCMR categories in renal allografts.
3.Deep Learning-Based Computer-Aided Diagnosis in Coronary Artery Calcium-Scoring CT for Pulmonary Nodule Detection: A Preliminary Study
Seung Yun LEE ; Ji Weon LEE ; Jung Im JUNG ; Kyunghwa HAN ; Suyon CHANG
Yonsei Medical Journal 2025;66(4):240-248
Purpose:
To evaluate the feasibility and utility of deep learning-based computer-aided diagnosis (DL-CAD) for the detection of pulmonary nodules on coronary artery calcium (CAC)-scoring computed tomography (CT).
Materials and Methods:
This retrospective study included 273 patients (aged 63.9±13.2 years; 129 men) who underwent CACscoring CT. A DL-CAD system based on thin-section images was used for pulmonary nodule detection, and two independent junior readers reviewed the standard CAC-scoring CT scans with and without referencing DL-CAD results. A reference standard was established through the consensus of two experienced radiologists. Sensitivity, positive predictive value, and F1-score were assessed on a per-nodule and per-patient basis. The patients’ medical records were monitored until November 2023.
Results:
A total of 269 nodules were identified in 129 patients. With DL-CAD assistance, the readers’ sensitivity significantly improved (65% vs. 80% for reader 1; 82% vs. 86% for reader 2; all p<0.001), without a notable increase in the number of false-positives per case (0.11 vs. 0.13, p=0.078 for reader 1; 0.11 vs. 0.11, p>0.999 for reader 2). Per-patient analysis also enhanced sensitivity with DL-CAD assistance (73% vs. 84%, p<0.001 for reader 1; 89% vs. 91%, p=0.250 for reader 2). During follow-up, lung cancer was diagnosed in four patients (1.5%). Among them, two had lesions detected on CAC-scoring CT, both of which were successfully identified by DL-CAD.
Conclusion
DL-CAD based on thin-section images can assist less experienced readers in detecting pulmonary nodules on CACscoring CT scans, improving detection sensitivity without significantly increasing false-positives.
4.Prospective Evaluation of Various Ultrasound Parameters for Assessing Renal Allograft Rejection Subtypes: Elasticity and Dispersion as Diagnostic Tools
Yeji KWON ; Jongjin YOON ; Dae Chul JUNG ; Young Taik OH ; Kyunghwa HAN ; Minsun JUNG ; Byung Chul KANG
Yonsei Medical Journal 2025;66(4):249-258
Purpose:
Renal allograft rejection, either acute or chronic, is prevalent among many recipients. This study aimed to identify multiple Doppler ultrasound parameters for predicting renal allograft rejection.
Materials and Methods:
Between November 2021 and April 2022, 61 renal allograft recipients were studied prospectively after excluding two patients with dual transplants and seven with hydronephrosis. The analysis excluded 11 cases (10 due to missing Doppler data or pathology reports and one due to a high interquartile range/median dispersion value), resulting in a final analysis of 50 patients. Clinical characteristics, color Doppler imaging, superb microvascular imaging, and shear-wave imaging parameters were assessed by three experienced genitourinary radiologists. The Banff classification of the biopsy tissue served as the reference standard. Univariable and multivariable logistic regression, contingency matrices, and multiple machine-learning models were employed to estimate the associations.
Results:
Fifty kidney transplant recipients (mean age, 53.26±8.86 years; 29 men) were evaluated. Elasticity (≤14.8 kPa) demonstrated significant associations for predicting the combination of (borderline) T cell-mediated rejection (TCMR) categories (Banff categories 3 and 4) (p=0.006) and yielded equal or higher area under the receiver operating characteristics curve (AUC) values compared to various classifiers. Dispersion (>15.0 m/s/kHz) was the only significant factor for predicting the combination of nonTCMR categories (Banff categories 2, 5, and 6) (p=0.026) and showed equal or higher AUC values than multiple machine learning classifiers.
Conclusion
Elasticity (≤14.8 kPa) showed a significant association with the combination of (borderline) TCMR categories, whereas dispersion (>15.0 m/s/kHz) was significantly associated with the combination of non-TCMR categories in renal allografts.
5.Deep Learning-Based Computer-Aided Diagnosis in Coronary Artery Calcium-Scoring CT for Pulmonary Nodule Detection: A Preliminary Study
Seung Yun LEE ; Ji Weon LEE ; Jung Im JUNG ; Kyunghwa HAN ; Suyon CHANG
Yonsei Medical Journal 2025;66(4):240-248
Purpose:
To evaluate the feasibility and utility of deep learning-based computer-aided diagnosis (DL-CAD) for the detection of pulmonary nodules on coronary artery calcium (CAC)-scoring computed tomography (CT).
Materials and Methods:
This retrospective study included 273 patients (aged 63.9±13.2 years; 129 men) who underwent CACscoring CT. A DL-CAD system based on thin-section images was used for pulmonary nodule detection, and two independent junior readers reviewed the standard CAC-scoring CT scans with and without referencing DL-CAD results. A reference standard was established through the consensus of two experienced radiologists. Sensitivity, positive predictive value, and F1-score were assessed on a per-nodule and per-patient basis. The patients’ medical records were monitored until November 2023.
Results:
A total of 269 nodules were identified in 129 patients. With DL-CAD assistance, the readers’ sensitivity significantly improved (65% vs. 80% for reader 1; 82% vs. 86% for reader 2; all p<0.001), without a notable increase in the number of false-positives per case (0.11 vs. 0.13, p=0.078 for reader 1; 0.11 vs. 0.11, p>0.999 for reader 2). Per-patient analysis also enhanced sensitivity with DL-CAD assistance (73% vs. 84%, p<0.001 for reader 1; 89% vs. 91%, p=0.250 for reader 2). During follow-up, lung cancer was diagnosed in four patients (1.5%). Among them, two had lesions detected on CAC-scoring CT, both of which were successfully identified by DL-CAD.
Conclusion
DL-CAD based on thin-section images can assist less experienced readers in detecting pulmonary nodules on CACscoring CT scans, improving detection sensitivity without significantly increasing false-positives.
6.Prospective Evaluation of Various Ultrasound Parameters for Assessing Renal Allograft Rejection Subtypes: Elasticity and Dispersion as Diagnostic Tools
Yeji KWON ; Jongjin YOON ; Dae Chul JUNG ; Young Taik OH ; Kyunghwa HAN ; Minsun JUNG ; Byung Chul KANG
Yonsei Medical Journal 2025;66(4):249-258
Purpose:
Renal allograft rejection, either acute or chronic, is prevalent among many recipients. This study aimed to identify multiple Doppler ultrasound parameters for predicting renal allograft rejection.
Materials and Methods:
Between November 2021 and April 2022, 61 renal allograft recipients were studied prospectively after excluding two patients with dual transplants and seven with hydronephrosis. The analysis excluded 11 cases (10 due to missing Doppler data or pathology reports and one due to a high interquartile range/median dispersion value), resulting in a final analysis of 50 patients. Clinical characteristics, color Doppler imaging, superb microvascular imaging, and shear-wave imaging parameters were assessed by three experienced genitourinary radiologists. The Banff classification of the biopsy tissue served as the reference standard. Univariable and multivariable logistic regression, contingency matrices, and multiple machine-learning models were employed to estimate the associations.
Results:
Fifty kidney transplant recipients (mean age, 53.26±8.86 years; 29 men) were evaluated. Elasticity (≤14.8 kPa) demonstrated significant associations for predicting the combination of (borderline) T cell-mediated rejection (TCMR) categories (Banff categories 3 and 4) (p=0.006) and yielded equal or higher area under the receiver operating characteristics curve (AUC) values compared to various classifiers. Dispersion (>15.0 m/s/kHz) was the only significant factor for predicting the combination of nonTCMR categories (Banff categories 2, 5, and 6) (p=0.026) and showed equal or higher AUC values than multiple machine learning classifiers.
Conclusion
Elasticity (≤14.8 kPa) showed a significant association with the combination of (borderline) TCMR categories, whereas dispersion (>15.0 m/s/kHz) was significantly associated with the combination of non-TCMR categories in renal allografts.
7.Eligibility for Lecanemab Treatment in the Republic of Korea:Real-World Data From Memory Clinics
Sung Hoon KANG ; Jee Hyang JEONG ; Jung-Min PYUN ; Geon Ha KIM ; Young Ho PARK ; YongSoo SHIM ; Seong-Ho KOH ; Chi-Hun KIM ; Young Chul YOUN ; Dong Won YANG ; Hyuk-je LEE ; Han LEE ; Dain KIM ; Kyunghwa SUN ; So Young MOON ; Kee Hyung PARK ; Seong Hye CHOI
Journal of Clinical Neurology 2025;21(3):182-189
Background:
and Purpose We aimed to determine the proportion of Korean patients with early Alzheimer’s disease (AD) who are eligible to receive lecanemab based on the United States Appropriate Use Recommendations (US AUR), and also identify the barriers to this treatment.
Methods:
We retrospectively enrolled 6,132 patients with amnestic mild cognitive impairment or mild amnestic dementia at 13 hospitals from June 2023 to May 2024. Among them, 2,058 patients underwent amyloid positron emission tomography (PET) and 1,199 (58.3%) of these patients were amyloid-positive on PET. We excluded 732 patients who did not undergo brain magnetic resonance imaging between June 2023 and May 2024. Finally, 467 patients were included in the present study.
Results:
When applying the criteria of the US AUR, approximately 50% of patients with early AD were eligible to receive lecanemab treatment. Among the 467 included patients, 36.8% did not meet the inclusion criterion of a Mini-Mental State Examination (MMSE) score of ≥22.
Conclusions
Eligibility for lecanemab treatment was not restricted to Korean patients with early AD except for those with an MMSE score of ≥22. The MMSE criteria should therefore be reconsidered in areas with a higher proportion of older people, who tend to have lower levels of education.
8.Eligibility for Lecanemab Treatment in the Republic of Korea:Real-World Data From Memory Clinics
Sung Hoon KANG ; Jee Hyang JEONG ; Jung-Min PYUN ; Geon Ha KIM ; Young Ho PARK ; YongSoo SHIM ; Seong-Ho KOH ; Chi-Hun KIM ; Young Chul YOUN ; Dong Won YANG ; Hyuk-je LEE ; Han LEE ; Dain KIM ; Kyunghwa SUN ; So Young MOON ; Kee Hyung PARK ; Seong Hye CHOI
Journal of Clinical Neurology 2025;21(3):182-189
Background:
and Purpose We aimed to determine the proportion of Korean patients with early Alzheimer’s disease (AD) who are eligible to receive lecanemab based on the United States Appropriate Use Recommendations (US AUR), and also identify the barriers to this treatment.
Methods:
We retrospectively enrolled 6,132 patients with amnestic mild cognitive impairment or mild amnestic dementia at 13 hospitals from June 2023 to May 2024. Among them, 2,058 patients underwent amyloid positron emission tomography (PET) and 1,199 (58.3%) of these patients were amyloid-positive on PET. We excluded 732 patients who did not undergo brain magnetic resonance imaging between June 2023 and May 2024. Finally, 467 patients were included in the present study.
Results:
When applying the criteria of the US AUR, approximately 50% of patients with early AD were eligible to receive lecanemab treatment. Among the 467 included patients, 36.8% did not meet the inclusion criterion of a Mini-Mental State Examination (MMSE) score of ≥22.
Conclusions
Eligibility for lecanemab treatment was not restricted to Korean patients with early AD except for those with an MMSE score of ≥22. The MMSE criteria should therefore be reconsidered in areas with a higher proportion of older people, who tend to have lower levels of education.
9.Deep Learning-Based Computer-Aided Diagnosis in Coronary Artery Calcium-Scoring CT for Pulmonary Nodule Detection: A Preliminary Study
Seung Yun LEE ; Ji Weon LEE ; Jung Im JUNG ; Kyunghwa HAN ; Suyon CHANG
Yonsei Medical Journal 2025;66(4):240-248
Purpose:
To evaluate the feasibility and utility of deep learning-based computer-aided diagnosis (DL-CAD) for the detection of pulmonary nodules on coronary artery calcium (CAC)-scoring computed tomography (CT).
Materials and Methods:
This retrospective study included 273 patients (aged 63.9±13.2 years; 129 men) who underwent CACscoring CT. A DL-CAD system based on thin-section images was used for pulmonary nodule detection, and two independent junior readers reviewed the standard CAC-scoring CT scans with and without referencing DL-CAD results. A reference standard was established through the consensus of two experienced radiologists. Sensitivity, positive predictive value, and F1-score were assessed on a per-nodule and per-patient basis. The patients’ medical records were monitored until November 2023.
Results:
A total of 269 nodules were identified in 129 patients. With DL-CAD assistance, the readers’ sensitivity significantly improved (65% vs. 80% for reader 1; 82% vs. 86% for reader 2; all p<0.001), without a notable increase in the number of false-positives per case (0.11 vs. 0.13, p=0.078 for reader 1; 0.11 vs. 0.11, p>0.999 for reader 2). Per-patient analysis also enhanced sensitivity with DL-CAD assistance (73% vs. 84%, p<0.001 for reader 1; 89% vs. 91%, p=0.250 for reader 2). During follow-up, lung cancer was diagnosed in four patients (1.5%). Among them, two had lesions detected on CAC-scoring CT, both of which were successfully identified by DL-CAD.
Conclusion
DL-CAD based on thin-section images can assist less experienced readers in detecting pulmonary nodules on CACscoring CT scans, improving detection sensitivity without significantly increasing false-positives.
10.Prospective Evaluation of Various Ultrasound Parameters for Assessing Renal Allograft Rejection Subtypes: Elasticity and Dispersion as Diagnostic Tools
Yeji KWON ; Jongjin YOON ; Dae Chul JUNG ; Young Taik OH ; Kyunghwa HAN ; Minsun JUNG ; Byung Chul KANG
Yonsei Medical Journal 2025;66(4):249-258
Purpose:
Renal allograft rejection, either acute or chronic, is prevalent among many recipients. This study aimed to identify multiple Doppler ultrasound parameters for predicting renal allograft rejection.
Materials and Methods:
Between November 2021 and April 2022, 61 renal allograft recipients were studied prospectively after excluding two patients with dual transplants and seven with hydronephrosis. The analysis excluded 11 cases (10 due to missing Doppler data or pathology reports and one due to a high interquartile range/median dispersion value), resulting in a final analysis of 50 patients. Clinical characteristics, color Doppler imaging, superb microvascular imaging, and shear-wave imaging parameters were assessed by three experienced genitourinary radiologists. The Banff classification of the biopsy tissue served as the reference standard. Univariable and multivariable logistic regression, contingency matrices, and multiple machine-learning models were employed to estimate the associations.
Results:
Fifty kidney transplant recipients (mean age, 53.26±8.86 years; 29 men) were evaluated. Elasticity (≤14.8 kPa) demonstrated significant associations for predicting the combination of (borderline) T cell-mediated rejection (TCMR) categories (Banff categories 3 and 4) (p=0.006) and yielded equal or higher area under the receiver operating characteristics curve (AUC) values compared to various classifiers. Dispersion (>15.0 m/s/kHz) was the only significant factor for predicting the combination of nonTCMR categories (Banff categories 2, 5, and 6) (p=0.026) and showed equal or higher AUC values than multiple machine learning classifiers.
Conclusion
Elasticity (≤14.8 kPa) showed a significant association with the combination of (borderline) TCMR categories, whereas dispersion (>15.0 m/s/kHz) was significantly associated with the combination of non-TCMR categories in renal allografts.

Result Analysis
Print
Save
E-mail