1.Overcoming taxonomic challenges in DNA barcoding for improvement of identification and preservation of clariid catfish species
Piangjai CHALERMWONG ; Thitipong PANTHUM ; Pish WATTANADILOKCAHTKUN ; Nattakan ARIYARAPHONG ; Thanyapat THONG ; Phanitada SRIKAMPA ; Worapong SINGCHAT ; Syed Farhan AHMAD ; Kantika NOITO ; Ryan RASOARAHONA ; Artem LISACHOV ; Hina ALI ; Ekaphan KRAICHAK ; Narongrit MUANGMAI ; Satid CHATCHAIPHAN ; Kednapat SRIPHAIROJ ; Sittichai HATACHOTE ; Aingorn CHAIYES ; Chatchawan JANTASURIYARAT ; Visarut CHAILERTLIT ; Warong SUKSAVATE ; Jumaporn SONONGBUA ; Witsanu SRIMAI ; Sunchai PAYUNGPORN ; Kyudong HAN ; Agostinho ANTUNES ; Prapansak SRISAPOOME ; Akihiko KOGA ; Prateep DUENGKAE ; Yoichi MATSUDA ; Uthairat NA-NAKORN ; Kornsorn SRIKULNATH
Genomics & Informatics 2023;21(3):e39-
DNA barcoding without assessing reliability and validity causes taxonomic errors of species identification, which is responsible for disruptions of their conservation and aquaculture industry. Although DNA barcoding facilitates molecular identification and phylogenetic analysis of species, its availability in clariid catfish lineage remains uncertain. In this study, DNA barcoding was developed and validated for clariid catfish. 2,970 barcode sequences from mitochondrial cytochrome c oxidase I (COI) and cytochrome b (Cytb) genes and D-loop sequences were analyzed for 37 clariid catfish species. The highest intraspecific nearest neighbor distances were 85.47%, 98.03%, and 89.10% for COI, Cytb, and D-loop sequences, respectively. This suggests that the Cytb gene is the most appropriate for identifying clariid catfish and can serve as a standard region for DNA barcoding. A positive barcoding gap between interspecific and intraspecific sequence divergence was observed in the Cytb dataset but not in the COI and D-loop datasets. Intraspecific variation was typically less than 4.4%, whereas interspecific variation was generally more than 66.9%. However, a species complex was detected in walking catfish and significant intraspecific sequence divergence was observed in North African catfish. These findings suggest the need to focus on developing a DNA barcoding system for classifying clariid catfish properly and to validate its efficacy for a wider range of clariid catfish. With an enriched database of multiple sequences from a target species and its genus, species identification can be more accurate and biodiversity assessment of the species can be facilitated.
2.Comparison of digital PCR platforms using the molecular marker
Cherl-Joon LEE ; Wonseok SHIN ; Minsik SONG ; Seung-Shick SHIN ; Yujun PARK ; Kornsorn SRIKULNATH ; Dong Hee KIM ; Kyudong HAN
Genomics & Informatics 2023;21(2):e24-
Assays of clinical diagnosis and species identification using molecular markers are performed according to a quantitative method in consideration of sensitivity, cost, speed, convenience, and specificity. However, typical polymerase chain reaction (PCR) assay is difficult to quantify and have various limitations. In addition, to perform quantitative analysis with the quantitative real-time PCR (qRT-PCR) equipment, a standard curve or normalization using reference genes is essential. Within the last a decade, previous studies have reported that the digital PCR (dPCR) assay, a third-generation PCR, can be applied in various fields by overcoming the shortcomings of typical PCR and qRT-PCR assays. We selected Stilla Naica System (Stilla Technologies), Droplet Digital PCR Technology (Bio-Rad), and Lab on an Array Digital Real-Time PCR analyzer system (OPTOLANE) for comparative analysis among the various droplet digital PCR platforms currently in use commercially. Our previous study discovered a molecular marker that can distinguish Hanwoo species (Korean native cattle) using Hanwoo-specific genomic structural variation. Here, we report the pros and cons of the operation of each dPCR platform from various perspectives using this species identification marker. In conclusion, we hope that this study will help researchers to select suitable dPCR platforms according to their purpose and resources.
3.Effective microbial molecular diagnosis of periodontitis-related pathogen Porphyromonas gingivalis from salivary samples using rgpA gene
Jinuk JEONG ; Yunseok OH ; Junhyeon JEON ; Dong-Heon BAEK ; Dong Hee KIM ; Kornsorn SRIKULNATH ; Kyudong HAN
Genomics & Informatics 2023;21(1):e13-
Importance of accurate molecular diagnosis and quantification of particular disease-related pathogenic microorganisms is highlighted as an introductory step to prevent and care for diseases. In this study, we designed a primer/probe set for quantitative real-time polymerase chain reaction (qRT-PCR) targeting rgpA gene, known as the specific virulence factor of periodontitis-related pathogenic bacteria ‘Porphyromonas gingivalis’, and evaluated its diagnostic efficiency by detecting and quantifying relative bacterial load of P. gingivalis within saliva samples collected from clinical subjects. As a result of qRT-PCR, we confirmed that relative bacterial load of P. gingivalis was detected and quantified within all samples of positive control and periodontitis groups. On the contrary, negative results were confirmed in both negative control and healthy groups. Additionally, as a result of comparison with next-generation sequencing (NGS)–based 16S metagenome profiling data, we confirmed relative bacterial load of P. gingivalis, which was not identified on bacterial classification table created through 16S microbiome analysis, in qRT-PCR results. It showed that an approach to quantifying specific microorganisms by applying qRT-PCR method could solve microbial misclassification issues at species level of an NGS-based 16S microbiome study. In this respect, we suggest that P. gingivalis–specific primer/probe set introduced in present study has efficient applicability in various oral healthcare industries, including periodontitis-related microbial molecular diagnosis field.
4.High-accuracy quantitative principle of a new compact digital PCR equipment: Lab On An Array
Haeun LEE ; Cherl-Joon LEE ; Dong Hee KIM ; Chun-Sung CHO ; Wonseok SHIN ; Kyudong HAN
Genomics & Informatics 2021;19(3):e34-
Digital PCR (dPCR) is the third-generation PCR that enables real-time absolute quantification without reference materials. Recently, global diagnosis companies have developed new dPCR equipment. In line with the development, the Lab On An Array (LOAA) dPCR analyzer (Optolane) was launched last year. The LOAA dPCR is a semiconductor chip-based separation PCR type equipment. The LOAA dPCR includes Micro Electro Mechanical System that can be injected by partitioning the target gene into 56 to 20,000 wells. The amount of target gene per wells is digitized to 0 or 1 as the number of well gradually increases to 20,000 wells because its principle follows Poisson distribution, which allows the LOAA dPCR to perform precise absolute quantification. LOAA determined region of interest first prior to dPCR operation. To exclude invalid wells for the quantification, the LOAA dPCR has applied various filtering methods using brightness, slope, baseline, and noise filters. As the coronavirus disease 2019 has now spread around the world, needs for diagnostic equipment of point of care testing (POCT) are increasing. The LOAA dPCR is expected to be suitable for POCT diagnosis due to its compact size and high accuracy. Here, we describe the quantitative principle of the LOAA dPCR and suggest that it can be applied to various fields.
5.The nature of triple-negative breast cancer classification and antitumoral strategies
Songmi KIM ; Dong Hee KIM ; Wooseok LEE ; Yong-Moon LEE ; Song-Yi CHOI ; Kyudong HAN
Genomics & Informatics 2020;18(4):e35-
Identifying the patterns of gene expression in breast cancers is essential to understanding their pathophysiology and developing anticancer drugs. Breast cancer is a heterogeneous disease with different subtypes determined by distinct biological features. Luminal breast cancer is characterized by a relatively high expression of estrogen receptor (ER) and progesterone receptor (PR) genes, which are expressed in breast luminal cells. In ~25% of invasive breast cancers, human epidermal growth factor receptor 2 (HER2) is overexpressed; these cancers are categorized as the HER2 type. Triple-negative breast cancer (TNBC), in which the cancer cells do not express ER/PR or HER2, shows highly aggressive clinical outcomes. TNBC can be further classified into specific subtypes according to genomic mutations and cancer immunogenicity. Herein, we discuss the brief history of TNBC classification and its implications for promising treatments.
6.Quantitative evaluation of the molecular marker using droplet digital PCR
Wonseok SHIN ; Haneul KIM ; Dong-Yep OH ; Dong Hee KIM ; Kyudong HAN
Genomics & Informatics 2020;18(1):e4-
Transposable elements (TEs) constitute approximately half of Bovine genome. They can be a powerful species-specific marker without regression mutations by the structure variation (SV) at the time of genomic evolution. In a previous study, we identified the Hanwoo-specific SV that was generated by a TE–association deletion event using traditional PCR method and Sanger sequencing validation. It could be used as a molecular marker to distinguish different cattle breeds (i.e., Hanwoo vs. Holstein). However, PCR is defective with various final copy quantifications from every sample. Thus, we applied to the droplet digital PCR (ddPCR) platform for accurate quantitative detection of the Hanwoo-specific SV. Although samples have low allele frequency variation within Hanwoo population, ddPCR could perform high sensitive detection with absolute quantification. We aimed to use ddPCR for more accurate quantification than PCR. We suggest that the ddPCR platform is applicable for the quantitative evaluation of molecular markers.
7.The nature of triple-negative breast cancer classification and antitumoral strategies
Songmi KIM ; Dong Hee KIM ; Wooseok LEE ; Yong-Moon LEE ; Song-Yi CHOI ; Kyudong HAN
Genomics & Informatics 2020;18(4):e35-
Identifying the patterns of gene expression in breast cancers is essential to understanding their pathophysiology and developing anticancer drugs. Breast cancer is a heterogeneous disease with different subtypes determined by distinct biological features. Luminal breast cancer is characterized by a relatively high expression of estrogen receptor (ER) and progesterone receptor (PR) genes, which are expressed in breast luminal cells. In ~25% of invasive breast cancers, human epidermal growth factor receptor 2 (HER2) is overexpressed; these cancers are categorized as the HER2 type. Triple-negative breast cancer (TNBC), in which the cancer cells do not express ER/PR or HER2, shows highly aggressive clinical outcomes. TNBC can be further classified into specific subtypes according to genomic mutations and cancer immunogenicity. Herein, we discuss the brief history of TNBC classification and its implications for promising treatments.
8.Quantitative evaluation of the molecular marker using droplet digital PCR
Wonseok SHIN ; Haneul KIM ; Dong-Yep OH ; Dong Hee KIM ; Kyudong HAN
Genomics & Informatics 2020;18(1):e4-
Transposable elements (TEs) constitute approximately half of Bovine genome. They can be a powerful species-specific marker without regression mutations by the structure variation (SV) at the time of genomic evolution. In a previous study, we identified the Hanwoo-specific SV that was generated by a TE–association deletion event using traditional PCR method and Sanger sequencing validation. It could be used as a molecular marker to distinguish different cattle breeds (i.e., Hanwoo vs. Holstein). However, PCR is defective with various final copy quantifications from every sample. Thus, we applied to the droplet digital PCR (ddPCR) platform for accurate quantitative detection of the Hanwoo-specific SV. Although samples have low allele frequency variation within Hanwoo population, ddPCR could perform high sensitive detection with absolute quantification. We aimed to use ddPCR for more accurate quantification than PCR. We suggest that the ddPCR platform is applicable for the quantitative evaluation of molecular markers.
9.Comprehensive Transcriptome Profiling of Balding and Non-Balding Scalps in Trichorhinophalangeal Syndrome Type I Patient.
Yun Ji KIM ; Byulee YOON ; Kyudong HAN ; Byung Cheol PARK
Annals of Dermatology 2017;29(5):597-601
BACKGROUND: Trichorhinophalangeal syndrome (TRPS) patients tend to have alopecia that appears to be androgenetic, and this genetic model might give clues to the pathogenesis of hair loss or hair morphogenesis. OBJECTIVE: This study was conducted to identify additional genetic evidence of TRPS and hair morphogenesis from a TRPS patient. METHODS: From one TRPS type I patient, we extracted RNA and profiled whole transcriptome in non-balding and balding scalp areas using high-throughput RNA sequencing. RESULTS: We found a total of 26,320 genes, which comprised 14,892 known genes with new isoforms and 4,883 novel genes from the non-balding and balding areas. Among these, a total of 1,242 genes showed different expression in the two scalp areas (p<0.05 and log2 fold-change >0). Several genes related to the skin and hair, alopecia, and the TRPS1 gene were validated by qRT-PCR. Twelve of 15 genes (KRT6C, KRTAP3-1, MKI67, GPRC5D, TYRP1, DSC1, PMEL, WIF1, SOX21, TINAG, PTGDS, and TRPS1) were down-regulated (10 genes: p<0.01; SOX21 and PTGDS: p>0.05), and the three other genes (HBA2, GAL, and DES) were up-regulated (p<0.01) in the balding scalp. Many genes related to keratin and hair development were down-regulated in the balding scalp of the TRPS type I patient. In particular, the TRPS1 gene might be related to androgen metabolism and hair morphogenesis. CONCLUSION: Our result could suggest a novel perspective and evidence to support further study of TRPS and hair morphogenesis.
Alopecia
;
Gene Expression Profiling*
;
Hair
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Metabolism
;
Models, Genetic
;
Morphogenesis
;
Protein Isoforms
;
RNA
;
Scalp*
;
Skin
;
Transcriptome*
10.Mutational Analysis of Extranodal NK/T-Cell Lymphoma Using Targeted Sequencing with a Comprehensive Cancer Panel.
Seungkyu CHOI ; Jai Hyang GO ; Eun Kyung KIM ; Hojung LEE ; Won Mi LEE ; Chun Sung CHO ; Kyudong HAN
Genomics & Informatics 2016;14(3):78-84
Extranodal natural killer (NK)/T-cell lymphoma, nasal type (NKTCL), is a malignant disorder of cytotoxic lymphocytes of NK or T cells. It is an aggressive neoplasm with a very poor prognosis. Although extranodal NKTCL reportedly has a strong association with Epstein-Barr virus, the molecular pathogenesis of NKTCL has been unexplored. The recent technological advancements in next-generation sequencing (NGS) have made DNA sequencing cost- and time-effective, with more reliable results. Using the Ion Proton Comprehensive Cancer Panel, we sequenced 409 cancer-related genes to identify somatic mutations in five NKTCL tissue samples. The sequencing analysis detected 25 mutations in 21 genes. Among them, KMT2D, a histone modification-related gene, was the most frequently mutated gene (four of the five cases). This result was consistent with recent NGS studies that have suggested KMT2D as a novel driver gene in NKTCL. Mutations were also found in ARID1A, a chromatin remodeling gene, and TP53, which also recurred in recent NGS studies. We also found mutations in 18 novel candidate genes, with molecular functions that were potentially implicated in cancer development. We suggest that these genes may result in multiple oncogenic events and may be used as potential bio-markers of NKTCL in the future.
Chromatin Assembly and Disassembly
;
Herpesvirus 4, Human
;
High-Throughput Nucleotide Sequencing
;
Histones
;
Lymphocytes
;
Lymphoma*
;
Prognosis
;
Protons
;
Sequence Analysis, DNA
;
T-Lymphocytes

Result Analysis
Print
Save
E-mail