1.Influence of Patellar Implant Shape on Patellofemoral Contact Pressure Using Finite Element Analysis
Hun Sik CHO ; Hyoung-Taek HONG ; Hyuck Min KWON ; Yong-Gon KOH ; Seong-Mun HWANG ; Kwan Kyu PARK ; Kyoung-Tak KANG
Yonsei Medical Journal 2025;66(6):383-389
Purpose:
This study focused on analyzing the contact pressure and area on different patellar component designs in total knee arthroplasty (TKA) to evaluate biomechanics related to the patellofemoral (PF) joint.
Materials and Methods:
The patellar components studied included the dome design, modified dome design, and anatomical design implants. Using finite element analysis and mechanical testing, the pressure and area were evaluated. The first loading condition was simulated at flexion angles of 0°, 15°, 45°, 90°, 120°, and 150°. The second loading condition was simulated for a clinically relevant scenario, involving a 2-mm medial shift at a flexion angle of 45°.
Results:
For both the modified dome and anatomical designs, the contact area and pressure increased with the flexion angle. The dome design reached its maximum contact area at a flexion angle of 120°. Among the designs, the anatomical design had the largest contact area and a lower contact pressure compared to the dome and modified dome designs. However, when a medial shift of 2 mm was simulated at a 45° flexion angle, which can occur clinically, the anatomical design showed edge contact, leading to higher contact pressure and reduced contact area. In contrast, the modified dome design demonstrated the lowest contact pressure and the greatest contact area under the same shifted conditions.
Conclusion
These findings suggest that the design of the patellar component significantly affects patellar biomechanics and stability. Specifically, the modified dome design showed improved biomechanical effects in clinically relevant scenarios. Therefore, patellar components with a modified dome design are expected to better manage PF joint pain and reduce complications in TKA.
2.Influence of Patellar Implant Shape on Patellofemoral Contact Pressure Using Finite Element Analysis
Hun Sik CHO ; Hyoung-Taek HONG ; Hyuck Min KWON ; Yong-Gon KOH ; Seong-Mun HWANG ; Kwan Kyu PARK ; Kyoung-Tak KANG
Yonsei Medical Journal 2025;66(6):383-389
Purpose:
This study focused on analyzing the contact pressure and area on different patellar component designs in total knee arthroplasty (TKA) to evaluate biomechanics related to the patellofemoral (PF) joint.
Materials and Methods:
The patellar components studied included the dome design, modified dome design, and anatomical design implants. Using finite element analysis and mechanical testing, the pressure and area were evaluated. The first loading condition was simulated at flexion angles of 0°, 15°, 45°, 90°, 120°, and 150°. The second loading condition was simulated for a clinically relevant scenario, involving a 2-mm medial shift at a flexion angle of 45°.
Results:
For both the modified dome and anatomical designs, the contact area and pressure increased with the flexion angle. The dome design reached its maximum contact area at a flexion angle of 120°. Among the designs, the anatomical design had the largest contact area and a lower contact pressure compared to the dome and modified dome designs. However, when a medial shift of 2 mm was simulated at a 45° flexion angle, which can occur clinically, the anatomical design showed edge contact, leading to higher contact pressure and reduced contact area. In contrast, the modified dome design demonstrated the lowest contact pressure and the greatest contact area under the same shifted conditions.
Conclusion
These findings suggest that the design of the patellar component significantly affects patellar biomechanics and stability. Specifically, the modified dome design showed improved biomechanical effects in clinically relevant scenarios. Therefore, patellar components with a modified dome design are expected to better manage PF joint pain and reduce complications in TKA.
3.Influence of Patellar Implant Shape on Patellofemoral Contact Pressure Using Finite Element Analysis
Hun Sik CHO ; Hyoung-Taek HONG ; Hyuck Min KWON ; Yong-Gon KOH ; Seong-Mun HWANG ; Kwan Kyu PARK ; Kyoung-Tak KANG
Yonsei Medical Journal 2025;66(6):383-389
Purpose:
This study focused on analyzing the contact pressure and area on different patellar component designs in total knee arthroplasty (TKA) to evaluate biomechanics related to the patellofemoral (PF) joint.
Materials and Methods:
The patellar components studied included the dome design, modified dome design, and anatomical design implants. Using finite element analysis and mechanical testing, the pressure and area were evaluated. The first loading condition was simulated at flexion angles of 0°, 15°, 45°, 90°, 120°, and 150°. The second loading condition was simulated for a clinically relevant scenario, involving a 2-mm medial shift at a flexion angle of 45°.
Results:
For both the modified dome and anatomical designs, the contact area and pressure increased with the flexion angle. The dome design reached its maximum contact area at a flexion angle of 120°. Among the designs, the anatomical design had the largest contact area and a lower contact pressure compared to the dome and modified dome designs. However, when a medial shift of 2 mm was simulated at a 45° flexion angle, which can occur clinically, the anatomical design showed edge contact, leading to higher contact pressure and reduced contact area. In contrast, the modified dome design demonstrated the lowest contact pressure and the greatest contact area under the same shifted conditions.
Conclusion
These findings suggest that the design of the patellar component significantly affects patellar biomechanics and stability. Specifically, the modified dome design showed improved biomechanical effects in clinically relevant scenarios. Therefore, patellar components with a modified dome design are expected to better manage PF joint pain and reduce complications in TKA.
4.Influence of Patellar Implant Shape on Patellofemoral Contact Pressure Using Finite Element Analysis
Hun Sik CHO ; Hyoung-Taek HONG ; Hyuck Min KWON ; Yong-Gon KOH ; Seong-Mun HWANG ; Kwan Kyu PARK ; Kyoung-Tak KANG
Yonsei Medical Journal 2025;66(6):383-389
Purpose:
This study focused on analyzing the contact pressure and area on different patellar component designs in total knee arthroplasty (TKA) to evaluate biomechanics related to the patellofemoral (PF) joint.
Materials and Methods:
The patellar components studied included the dome design, modified dome design, and anatomical design implants. Using finite element analysis and mechanical testing, the pressure and area were evaluated. The first loading condition was simulated at flexion angles of 0°, 15°, 45°, 90°, 120°, and 150°. The second loading condition was simulated for a clinically relevant scenario, involving a 2-mm medial shift at a flexion angle of 45°.
Results:
For both the modified dome and anatomical designs, the contact area and pressure increased with the flexion angle. The dome design reached its maximum contact area at a flexion angle of 120°. Among the designs, the anatomical design had the largest contact area and a lower contact pressure compared to the dome and modified dome designs. However, when a medial shift of 2 mm was simulated at a 45° flexion angle, which can occur clinically, the anatomical design showed edge contact, leading to higher contact pressure and reduced contact area. In contrast, the modified dome design demonstrated the lowest contact pressure and the greatest contact area under the same shifted conditions.
Conclusion
These findings suggest that the design of the patellar component significantly affects patellar biomechanics and stability. Specifically, the modified dome design showed improved biomechanical effects in clinically relevant scenarios. Therefore, patellar components with a modified dome design are expected to better manage PF joint pain and reduce complications in TKA.
5.Influence of Patellar Implant Shape on Patellofemoral Contact Pressure Using Finite Element Analysis
Hun Sik CHO ; Hyoung-Taek HONG ; Hyuck Min KWON ; Yong-Gon KOH ; Seong-Mun HWANG ; Kwan Kyu PARK ; Kyoung-Tak KANG
Yonsei Medical Journal 2025;66(6):383-389
Purpose:
This study focused on analyzing the contact pressure and area on different patellar component designs in total knee arthroplasty (TKA) to evaluate biomechanics related to the patellofemoral (PF) joint.
Materials and Methods:
The patellar components studied included the dome design, modified dome design, and anatomical design implants. Using finite element analysis and mechanical testing, the pressure and area were evaluated. The first loading condition was simulated at flexion angles of 0°, 15°, 45°, 90°, 120°, and 150°. The second loading condition was simulated for a clinically relevant scenario, involving a 2-mm medial shift at a flexion angle of 45°.
Results:
For both the modified dome and anatomical designs, the contact area and pressure increased with the flexion angle. The dome design reached its maximum contact area at a flexion angle of 120°. Among the designs, the anatomical design had the largest contact area and a lower contact pressure compared to the dome and modified dome designs. However, when a medial shift of 2 mm was simulated at a 45° flexion angle, which can occur clinically, the anatomical design showed edge contact, leading to higher contact pressure and reduced contact area. In contrast, the modified dome design demonstrated the lowest contact pressure and the greatest contact area under the same shifted conditions.
Conclusion
These findings suggest that the design of the patellar component significantly affects patellar biomechanics and stability. Specifically, the modified dome design showed improved biomechanical effects in clinically relevant scenarios. Therefore, patellar components with a modified dome design are expected to better manage PF joint pain and reduce complications in TKA.
6.Safety and Effectiveness of Dulaglutide in the Treatment of Type 2 Diabetes Mellitus: A Korean Real-World Post-Marketing Study
Jeonghee HAN ; Woo Je LEE ; Kyu Yeon HUR ; Jae Hyoung CHO ; Byung Wan LEE ; Cheol-Young PARK
Diabetes & Metabolism Journal 2024;48(3):418-428
Background:
To investigate the real-world safety and effectiveness of dulaglutide in Korean adults with type 2 diabetes mellitus (T2DM).
Methods:
This was a real-world, prospective, non-interventional post-marketing safety study conducted from May 26, 2015 to May 25, 2021 at 85 Korean healthcare centers using electronic case data. Data on patients using dulaglutide 0.75 mg/0.5 mL or the dulaglutide 1.5 mg/0.5 mL single-use pens were collected and pooled. The primary objective was to report the frequency and proportion of adverse and serious adverse events that occurred. The secondary objective was to monitor the effectiveness of dulaglutide at 12 and 24 weeks by evaluating changes in glycosylated hemoglobin (HbA1c ), fasting plasma glucose, and body weight.
Results:
Data were collected from 3,067 subjects, and 3,022 subjects who received ≥1 dose (of any strength) of dulaglutide were included in the safety analysis set (53% female, mean age 56 years; diabetes duration 11.2 years, mean HbA1c 8.8%). The number of adverse events reported was 819; of these, 68 (8.3%) were serious adverse events. One death was reported. Adverse events were mostly mild in severity; 60.81% of adverse events were considered related to dulaglutide. This study was completed by 72.73% (2,198/3,022) of subjects. At 12/24 weeks there were significant (P<0.0001) reductions from baseline in least-squares mean HbA1c (0.96%/0.95%), fasting blood glucose (26.24/24.43 mg/dL), and body weight (0.75/1.21 kg).
Conclusion
Dulaglutide was generally well tolerated and effective in real-world Korean individuals with T2DM. The results from this study contribute to the body of evidence for dulaglutide use in this population.
7.Efficacy and Safety of Lurasidone vs. Quetiapine XR in Acutely Psychotic Patients With Schizophrenia in Korea: A Randomized, Double-Blind, Active-Controlled Trial
Se Hyun KIM ; Do-Un JUNG ; Do Hoon KIM ; Jung Sik LEE ; Kyoung-Uk LEE ; Seunghee WON ; Bong Ju LEE ; Sung-Gon KIM ; Sungwon ROH ; Jong-Ik PARK ; Minah KIM ; Sung Won JUNG ; Hong Seok OH ; Han-yong JUNG ; Sang Hoon KIM ; Hyun Seung CHEE ; Jong-Woo PAIK ; Kyu Young LEE ; Soo In KIM ; Seung-Hwan LEE ; Eun-Jin CHEON ; Hye-Geum KIM ; Heon-Jeong LEE ; In Won CHUNG ; Joonho CHOI ; Min-Hyuk KIM ; Seong-Jin CHO ; HyunChul YOUN ; Jhin-Goo CHANG ; Hoo Rim SONG ; Euitae KIM ; Won-Hyoung KIM ; Chul Eung KIM ; Doo-Heum PARK ; Byung-Ook LEE ; Jungsun LEE ; Seung-Yup LEE ; Nuree KANG ; Hee Yeon JUNG
Psychiatry Investigation 2024;21(7):762-771
Objective:
This study was performed to evaluate the efficacy and safety of lurasidone (160 mg/day) compared to quetiapine XR (QXR; 600 mg/day) in the treatment of acutely psychotic patients with schizophrenia.
Methods:
Patients were randomly assigned to 6 weeks of double-blind treatment with lurasidone 160 mg/day (n=105) or QXR 600 mg/day (n=105). Primary efficacy measure was the change from baseline to week 6 in Positive and Negative Syndrome Scale (PANSS) total score and Clinical Global Impressions severity (CGI-S) score. Adverse events, body measurements, and laboratory parameters were assessed.
Results:
Lurasidone demonstrated non-inferiority to QXR on the PANSS total score. Adjusted mean±standard error change at week 6 on the PANSS total score was -26.42±2.02 and -27.33±2.01 in the lurasidone and QXR group, respectively. The mean difference score was -0.91 (95% confidence interval -6.35–4.53). The lurasidone group showed a greater reduction in PANSS total and negative subscale on week 1 and a greater reduction in end-point CGI-S score compared to the QXR group. Body weight, body mass index, and waist circumference in the lurasidone group were reduced, with significantly lower mean change compared to QXR. Endpoint changes in glucose, cholesterol, triglycerides, and low-density lipoprotein levels were also significantly lower. The most common adverse drug reactions with lurasidone were akathisia and nausea.
Conclusion
Lurasidone 160 mg/day was found to be non-inferior to QXR 600 mg/day in the treatment of schizophrenia with comparable efficacy and tolerability. Adverse effects of lurasidone were generally tolerable, and beneficial effects on metabolic parameters can be expected.
8.Corrigendum to: Cardioprotection via mitochondrial transplantation supports fatty acid metabolism in ischemia-reperfusion injured rat heart
Jehee JANG ; Ki-Woon KANG ; Young-Won KIM ; Seohyun JEONG ; Jaeyoon PARK ; Jihoon PARK ; Jisung MOON ; Junghyun JANG ; Seohyeon KIM ; Sunghun KIM ; Sungjoo CHO ; Yurim LEE ; Hyoung Kyu KIM ; Jin HAN ; Eun-A KO ; Sung-Cherl JUNG ; Jung-Ha KIM ; Jae-Hong KO
The Korean Journal of Physiology and Pharmacology 2024;28(4):391-391
9.Cardioprotection via mitochondrial transplantation supports fatty acid metabolism in ischemia-reperfusion injured rat heart
Jehee JANG ; Ki-Woon KANG ; Young-Won KIM ; Seohyun JEONG ; Jaeyoon PARK ; Jihoon PARK ; Jisung MOON ; Junghyun JANG ; Seohyeon KIM ; Sunghun KIM ; Sungjoo CHO ; Yurim LEE ; Hyoung Kyu KIM ; Jin HAN ; Eun-A KO ; Sung-Cherl JUNG ; Jung-Ha KIM ; Jae-Hong KO
The Korean Journal of Physiology and Pharmacology 2024;28(3):209-217
In addition to cellular damage, ischemia-reperfusion (IR) injury induces substantial damage to the mitochondria and endoplasmic reticulum. In this study, we sought to determine whether impaired mitochondrial function owing to IR could be restored by transplanting mitochondria into the heart under ex vivo IR states. Additionally, we aimed to provide preliminary results to inform therapeutic options for ischemic heart disease (IHD). Healthy mitochondria isolated from autologous gluteus maximus muscle were transplanted into the hearts of Sprague–Dawley rats damaged by IR using the Langendorff system, and the heart rate and oxygen consumption capacity of the mitochondria were measured to confirm whether heart function was restored. In addition, relative expression levels were measured to identify the genes related to IR injury. Mitochondrial oxygen consumption capacity was found to be lower in the IR group than in the group that underwent mitochondrial transplantation after IR injury (p < 0.05), and the control group showed a tendency toward increased oxygen consumption capacity compared with the IR group. Among the genes related to fatty acid metabolism, Cpt1b (p < 0.05) and Fads1 (p < 0.01) showed significant expression in the following order: IR group, IR + transplantation group, and control group. These results suggest that mitochondrial transplantation protects the heart from IR damage and may be feasible as a therapeutic option for IHD.
10.Association Between Changes in Bioelectrical Impedance Analysis (BIA) Parameter and the Clinical Outcomes in Patients With Acute Heart Failure
Kyu-Sun LEE ; Jae-hyoung KIM ; Jeehoon KANG ; Hyun-Jai CHO ; Hae-Young LEE
Journal of Korean Medical Science 2023;38(35):e276-
Background:
Volume overload is associated not only with clinical manifestations but also with poor outcomes of heart failure (HF). However, there is an unmet need for effective methods for serial monitoring of volume status during HF hospitalization. The aim of this study was to evaluate the prognostic implication of serial measurement of bioelectrical impedance analysis (BIA) in patients hospitalized with acute HF.
Methods:
This study is a retrospective observational study and screened 310 patients hospitalized due to acute decompensated HF between November 2021 and September 2022. Among them, 116 patients with acute HF who underwent BIA at the time of admission and at discharge were evaluated. We investigated the correlation between change of BIA parameters and the primary composite outcome (in-hospital mortality or rehospitalization for worsening HF within one month).
Results:
The median (interquartile range) age was 77 years (67–82 years). The mean left ventricular ejection fraction was 40.7 ± 14.6% and 55.8% of HF patients have HF with reduced ejection fraction. The body water composition (intracellular water [ICW], extracellular water [ECW], and total body water [TBW]) showed a statistically significant correlation with body mass index and LV chamber sizes. Furthermore, the ratio of ECW to TBW (ECW/TBW), as an edema index showed a significant correlation with natriuretic peptide levels. Notably, the change of the edema index during hospitalization (ΔECW/TBW) showed a significant correlation with the primary outcome. The area under the curve of ΔECW/TBW for predicting primary outcome was 0.71 (95% confidence interval [CI], 0.61–0.79; P = 0.006). When patients were divided into two groups based on the median value of ΔECW/TBW, the group of high and positive ΔECW/TBW (+0.3% to +5.1%) had a significantly higher risk of the primary outcome (23.2% vs. 8.3%, adjusted odds ratio, 4.8; 95% CI, 1.2–19.3; P = 0.029) than those with a low and negative ΔECW/TBW (−5.3% to +0.2%).
Conclusion
BIA is a noninvasive and effective method to evaluate the volume status during the hospitalization of HF patients. The high and positive value of ΔECW/TBW during hospitalization was associated with poor outcomes in patients with HF.

Result Analysis
Print
Save
E-mail