1.Development of a Standardized Suicide Prevention Program for Gatekeeper Intervention in Korea (Suicide CARE Version 2.0) to Prevent Adolescent Suicide: Version for Teachers
Hyeon-Ah LEE ; Yeon Jung LEE ; Kyong Ah KIM ; Myungjae BAIK ; Jong-Woo PAIK ; Jinmi SEOL ; Sang Min LEE ; Eun-Jin LEE ; Haewoo LEE ; Meerae LIM ; Jin Yong JUN ; Seon Wan KI ; Hong Jin JEON ; Sun Jung KWON ; Hwa-Young LEE
Psychiatry Investigation 2025;22(1):117-117
2.Molecular Classification of Breast Cancer Using Weakly Supervised Learning
Wooyoung JANG ; Jonghyun LEE ; Kyong Hwa PARK ; Aeree KIM ; Sung Hak LEE ; Sangjeong AHN
Cancer Research and Treatment 2025;57(1):116-125
Purpose:
The molecular classification of breast cancer is crucial for effective treatment. The emergence of digital pathology has ushered in a new era in which weakly supervised learning leveraging whole-slide images has gained prominence in developing deep learning models because this approach alleviates the need for extensive manual annotation. Weakly supervised learning was employed to classify the molecular subtypes of breast cancer.
Materials and Methods:
Our approach capitalizes on two whole-slide image datasets: one consisting of breast cancer cases from the Korea University Guro Hospital (KG) and the other originating from The Cancer Genomic Atlas dataset (TCGA). Furthermore, we visualized the inferred results using an attention-based heat map and reviewed the histomorphological features of the most attentive patches.
Results:
The KG+TCGA-trained model achieved an area under the receiver operating characteristics value of 0.749. An inherent challenge lies in the imbalance among subtypes. Additionally, discrepancies between the two datasets resulted in different molecular subtype proportions. To mitigate this imbalance, we merged the two datasets, and the resulting model exhibited improved performance. The attentive patches correlated well with widely recognized histomorphologic features. The triple-negative subtype has a high incidence of high-grade nuclei, tumor necrosis, and intratumoral tumor-infiltrating lymphocytes. The luminal A subtype showed a high incidence of collagen fibers.
Conclusion
The artificial intelligence (AI) model based on weakly supervised learning showed promising performance. A review of the most attentive patches provided insights into the predictions of the AI model. AI models can become invaluable screening tools that reduce costs and workloads in practice.
3.Development of a Standardized Suicide Prevention Program for Gatekeeper Intervention in Korea (Suicide CARE Version 2.0) to Prevent Adolescent Suicide: Version for Teachers
Hyeon-Ah LEE ; Yeon Jung LEE ; Kyong Ah KIM ; Myungjae BAIK ; Jong-Woo PAIK ; Jinmi SEOL ; Sang Min LEE ; Eun-Jin LEE ; Haewoo LEE ; Meerae LIM ; Jin Yong JUN ; Seon Wan KI ; Hong Jin JEON ; Sun Jung KWON ; Hwa-Young LEE
Psychiatry Investigation 2025;22(1):117-117
4.Development of a Standardized Suicide Prevention Program for Gatekeeper Intervention in Korea (Suicide CARE Version 2.0) to Prevent Adolescent Suicide: Version for Teachers
Hyeon-Ah LEE ; Yeon Jung LEE ; Kyong Ah KIM ; Myungjae BAIK ; Jong-Woo PAIK ; Jinmi SEOL ; Sang Min LEE ; Eun-Jin LEE ; Haewoo LEE ; Meerae LIM ; Jin Yong JUN ; Seon Wan KI ; Hong Jin JEON ; Sun Jung KWON ; Hwa-Young LEE
Psychiatry Investigation 2025;22(1):117-117
5.Molecular Classification of Breast Cancer Using Weakly Supervised Learning
Wooyoung JANG ; Jonghyun LEE ; Kyong Hwa PARK ; Aeree KIM ; Sung Hak LEE ; Sangjeong AHN
Cancer Research and Treatment 2025;57(1):116-125
Purpose:
The molecular classification of breast cancer is crucial for effective treatment. The emergence of digital pathology has ushered in a new era in which weakly supervised learning leveraging whole-slide images has gained prominence in developing deep learning models because this approach alleviates the need for extensive manual annotation. Weakly supervised learning was employed to classify the molecular subtypes of breast cancer.
Materials and Methods:
Our approach capitalizes on two whole-slide image datasets: one consisting of breast cancer cases from the Korea University Guro Hospital (KG) and the other originating from The Cancer Genomic Atlas dataset (TCGA). Furthermore, we visualized the inferred results using an attention-based heat map and reviewed the histomorphological features of the most attentive patches.
Results:
The KG+TCGA-trained model achieved an area under the receiver operating characteristics value of 0.749. An inherent challenge lies in the imbalance among subtypes. Additionally, discrepancies between the two datasets resulted in different molecular subtype proportions. To mitigate this imbalance, we merged the two datasets, and the resulting model exhibited improved performance. The attentive patches correlated well with widely recognized histomorphologic features. The triple-negative subtype has a high incidence of high-grade nuclei, tumor necrosis, and intratumoral tumor-infiltrating lymphocytes. The luminal A subtype showed a high incidence of collagen fibers.
Conclusion
The artificial intelligence (AI) model based on weakly supervised learning showed promising performance. A review of the most attentive patches provided insights into the predictions of the AI model. AI models can become invaluable screening tools that reduce costs and workloads in practice.
6.Development of a Standardized Suicide Prevention Program for Gatekeeper Intervention in Korea (Suicide CARE Version 2.0) to Prevent Adolescent Suicide: Version for Teachers
Hyeon-Ah LEE ; Yeon Jung LEE ; Kyong Ah KIM ; Myungjae BAIK ; Jong-Woo PAIK ; Jinmi SEOL ; Sang Min LEE ; Eun-Jin LEE ; Haewoo LEE ; Meerae LIM ; Jin Yong JUN ; Seon Wan KI ; Hong Jin JEON ; Sun Jung KWON ; Hwa-Young LEE
Psychiatry Investigation 2025;22(1):117-117
7.Molecular Classification of Breast Cancer Using Weakly Supervised Learning
Wooyoung JANG ; Jonghyun LEE ; Kyong Hwa PARK ; Aeree KIM ; Sung Hak LEE ; Sangjeong AHN
Cancer Research and Treatment 2025;57(1):116-125
Purpose:
The molecular classification of breast cancer is crucial for effective treatment. The emergence of digital pathology has ushered in a new era in which weakly supervised learning leveraging whole-slide images has gained prominence in developing deep learning models because this approach alleviates the need for extensive manual annotation. Weakly supervised learning was employed to classify the molecular subtypes of breast cancer.
Materials and Methods:
Our approach capitalizes on two whole-slide image datasets: one consisting of breast cancer cases from the Korea University Guro Hospital (KG) and the other originating from The Cancer Genomic Atlas dataset (TCGA). Furthermore, we visualized the inferred results using an attention-based heat map and reviewed the histomorphological features of the most attentive patches.
Results:
The KG+TCGA-trained model achieved an area under the receiver operating characteristics value of 0.749. An inherent challenge lies in the imbalance among subtypes. Additionally, discrepancies between the two datasets resulted in different molecular subtype proportions. To mitigate this imbalance, we merged the two datasets, and the resulting model exhibited improved performance. The attentive patches correlated well with widely recognized histomorphologic features. The triple-negative subtype has a high incidence of high-grade nuclei, tumor necrosis, and intratumoral tumor-infiltrating lymphocytes. The luminal A subtype showed a high incidence of collagen fibers.
Conclusion
The artificial intelligence (AI) model based on weakly supervised learning showed promising performance. A review of the most attentive patches provided insights into the predictions of the AI model. AI models can become invaluable screening tools that reduce costs and workloads in practice.
8.Development of a Standardized Suicide Prevention Program for Gatekeeper Intervention in Korea (Suicide CARE Version 2.0) to Prevent Adolescent Suicide: Version for Teachers
Hyeon-Ah LEE ; Yeon Jung LEE ; Kyong Ah KIM ; Myungjae BAIK ; Jong-Woo PAIK ; Jinmi SEOL ; Sang Min LEE ; Eun-Jin LEE ; Haewoo LEE ; Meerae LIM ; Jin Yong JUN ; Seon Wan KI ; Hong Jin JEON ; Sun Jung KWON ; Hwa-Young LEE
Psychiatry Investigation 2025;22(1):117-117
9.2023 Clinical Practice Guidelines for Diabetes Management in Korea: Full Version Recommendation of the Korean Diabetes Association
Jun Sung MOON ; Shinae KANG ; Jong Han CHOI ; Kyung Ae LEE ; Joon Ho MOON ; Suk CHON ; Dae Jung KIM ; Hyun Jin KIM ; Ji A SEO ; Mee Kyoung KIM ; Jeong Hyun LIM ; Yoon Ju SONG ; Ye Seul YANG ; Jae Hyeon KIM ; You-Bin LEE ; Junghyun NOH ; Kyu Yeon HUR ; Jong Suk PARK ; Sang Youl RHEE ; Hae Jin KIM ; Hyun Min KIM ; Jung Hae KO ; Nam Hoon KIM ; Chong Hwa KIM ; Jeeyun AHN ; Tae Jung OH ; Soo-Kyung KIM ; Jaehyun KIM ; Eugene HAN ; Sang-Man JIN ; Jaehyun BAE ; Eonju JEON ; Ji Min KIM ; Seon Mee KANG ; Jung Hwan PARK ; Jae-Seung YUN ; Bong-Soo CHA ; Min Kyong MOON ; Byung-Wan LEE
Diabetes & Metabolism Journal 2024;48(4):546-708
10.Study Design and Protocol for a Randomized Controlled Trial to Assess Long-Term Efficacy and Safety of a Triple Combination of Ezetimibe, Fenofibrate, and Moderate-Intensity Statin in Patients with Type 2 Diabetes and Modifiable Cardiovascular Risk Factors (ENSEMBLE)
Nam Hoon KIM ; Juneyoung LEE ; Suk CHON ; Jae Myung YU ; In-Kyung JEONG ; Soo LIM ; Won Jun KIM ; Keeho SONG ; Ho Chan CHO ; Hea Min YU ; Kyoung-Ah KIM ; Sang Soo KIM ; Soon Hee LEE ; Chong Hwa KIM ; Soo Heon KWAK ; Yong‐ho LEE ; Choon Hee CHUNG ; Sihoon LEE ; Heung Yong JIN ; Jae Hyuk LEE ; Gwanpyo KOH ; Sang-Yong KIM ; Jaetaek KIM ; Ju Hee LEE ; Tae Nyun KIM ; Hyun Jeong JEON ; Ji Hyun LEE ; Jae-Han JEON ; Hye Jin YOO ; Hee Kyung KIM ; Hyeong-Kyu PARK ; Il Seong NAM-GOONG ; Seongbin HONG ; Chul Woo AHN ; Ji Hee YU ; Jong Heon PARK ; Keun-Gyu PARK ; Chan Ho PARK ; Kyong Hye JOUNG ; Ohk-Hyun RYU ; Keun Yong PARK ; Eun-Gyoung HONG ; Bong-Soo CHA ; Kyu Chang WON ; Yoon-Sok CHUNG ; Sin Gon KIM
Endocrinology and Metabolism 2024;39(5):722-731
Background:
Atherogenic dyslipidemia, which is frequently associated with type 2 diabetes (T2D) and insulin resistance, contributes to the development of vascular complications. Statin therapy is the primary approach to dyslipidemia management in T2D, however, the role of non-statin therapy remains unclear. Ezetimibe reduces cholesterol burden by inhibiting intestinal cholesterol absorption. Fibrates lower triglyceride levels and increase high-density lipoprotein cholesterol (HDL-C) levels via peroxisome proliferator- activated receptor alpha agonism. Therefore, when combined, these drugs effectively lower non-HDL-C levels. Despite this, few clinical trials have specifically targeted non-HDL-C, and the efficacy of triple combination therapies, including statins, ezetimibe, and fibrates, has yet to be determined.
Methods:
This is a multicenter, prospective, randomized, open-label, active-comparator controlled trial involving 3,958 eligible participants with T2D, cardiovascular risk factors, and elevated non-HDL-C (≥100 mg/dL). Participants, already on moderate-intensity statins, will be randomly assigned to either Ezefeno (ezetimibe/fenofibrate) addition or statin dose-escalation. The primary end point is the development of a composite of major adverse cardiovascular and diabetic microvascular events over 48 months.
Conclusion
This trial aims to assess whether combining statins, ezetimibe, and fenofibrate is as effective as, or possibly superior to, statin monotherapy intensification in lowering cardiovascular and microvascular disease risk for patients with T2D. This could propose a novel therapeutic approach for managing dyslipidemia in T2D.

Result Analysis
Print
Save
E-mail