1.Thoracic spinal cord damage in rat following cardiac arrest: neuronal loss, blood-spinal cord barrier leakage, and astrocyte endfeet disruption
Myoung Cheol SHIN ; Hyun-Jin TAE ; Joon Ha PARK ; Ji Hyeon AHN ; Dae Won KIM ; Moo-Ho WON ; Jun Hwi CHO ; Tae-Kyeong LEE
Journal of the Korean Society of Emergency Medicine 2025;36(1):1-11
Objective:
Cardiac arrest and cardiopulmonary resuscitation (CA/R) lead to whole-body ischemia and reperfusion (IR) injury, causing multiple organ dysfunction, including ischemic spinal cord injury. The thoracic spinal cord levels are crucial for maintaining the sympathetic functions vital for life. This study examined blood-spinal cord barrier (BSCB) leakage and astrocyte endfeet (AEF) disruption and their effects on survival, physiological variables, and neuronal damage/death in the intermediate zone (IMZ) at the seventh thoracic spinal cord level after asphyxial CA/R in rats.
Methods:
The rats underwent whole-body IR injury by asphyxial CA/R. Kaplan-Meier analysis was conducted to assess the cumulative survival post-CA/R. The histological changes post-CA/R were evaluated using immunohistochemistry, histofluorescence, and double histofluorescence.
Results:
No significant differences in body weight, mean arterial pressure, and heart rate were found between the sham and CA/R groups post-CA/R. The survival rates in the CA/R group at 12, 24, and 48 hours were 62.58%, 36.37%, and 7.8%, respectively. Neuronal loss and BSCB leakage began 12 hours post-CA/R, increasing with time. Reactive astrogliosis appeared at 12 hours and increased, while AEF disruption around blood vessels was evident at 48 hours.
Conclusion
The survival rate declined significantly by 48 hours post-CA/R. Neuronal loss and BSCB leakage in the thoracic spinal cord IMZ was evident at 12 hours and significant by 48 hours, aligning with AEF disruption. Neuronal loss in the thoracic spinal cord IMZ post-CA/R may be related to BSCB leakage and AEF disruption.
2.Thoracic spinal cord damage in rat following cardiac arrest: neuronal loss, blood-spinal cord barrier leakage, and astrocyte endfeet disruption
Myoung Cheol SHIN ; Hyun-Jin TAE ; Joon Ha PARK ; Ji Hyeon AHN ; Dae Won KIM ; Moo-Ho WON ; Jun Hwi CHO ; Tae-Kyeong LEE
Journal of the Korean Society of Emergency Medicine 2025;36(1):1-11
Objective:
Cardiac arrest and cardiopulmonary resuscitation (CA/R) lead to whole-body ischemia and reperfusion (IR) injury, causing multiple organ dysfunction, including ischemic spinal cord injury. The thoracic spinal cord levels are crucial for maintaining the sympathetic functions vital for life. This study examined blood-spinal cord barrier (BSCB) leakage and astrocyte endfeet (AEF) disruption and their effects on survival, physiological variables, and neuronal damage/death in the intermediate zone (IMZ) at the seventh thoracic spinal cord level after asphyxial CA/R in rats.
Methods:
The rats underwent whole-body IR injury by asphyxial CA/R. Kaplan-Meier analysis was conducted to assess the cumulative survival post-CA/R. The histological changes post-CA/R were evaluated using immunohistochemistry, histofluorescence, and double histofluorescence.
Results:
No significant differences in body weight, mean arterial pressure, and heart rate were found between the sham and CA/R groups post-CA/R. The survival rates in the CA/R group at 12, 24, and 48 hours were 62.58%, 36.37%, and 7.8%, respectively. Neuronal loss and BSCB leakage began 12 hours post-CA/R, increasing with time. Reactive astrogliosis appeared at 12 hours and increased, while AEF disruption around blood vessels was evident at 48 hours.
Conclusion
The survival rate declined significantly by 48 hours post-CA/R. Neuronal loss and BSCB leakage in the thoracic spinal cord IMZ was evident at 12 hours and significant by 48 hours, aligning with AEF disruption. Neuronal loss in the thoracic spinal cord IMZ post-CA/R may be related to BSCB leakage and AEF disruption.
3.Thoracic spinal cord damage in rat following cardiac arrest: neuronal loss, blood-spinal cord barrier leakage, and astrocyte endfeet disruption
Myoung Cheol SHIN ; Hyun-Jin TAE ; Joon Ha PARK ; Ji Hyeon AHN ; Dae Won KIM ; Moo-Ho WON ; Jun Hwi CHO ; Tae-Kyeong LEE
Journal of the Korean Society of Emergency Medicine 2025;36(1):1-11
Objective:
Cardiac arrest and cardiopulmonary resuscitation (CA/R) lead to whole-body ischemia and reperfusion (IR) injury, causing multiple organ dysfunction, including ischemic spinal cord injury. The thoracic spinal cord levels are crucial for maintaining the sympathetic functions vital for life. This study examined blood-spinal cord barrier (BSCB) leakage and astrocyte endfeet (AEF) disruption and their effects on survival, physiological variables, and neuronal damage/death in the intermediate zone (IMZ) at the seventh thoracic spinal cord level after asphyxial CA/R in rats.
Methods:
The rats underwent whole-body IR injury by asphyxial CA/R. Kaplan-Meier analysis was conducted to assess the cumulative survival post-CA/R. The histological changes post-CA/R were evaluated using immunohistochemistry, histofluorescence, and double histofluorescence.
Results:
No significant differences in body weight, mean arterial pressure, and heart rate were found between the sham and CA/R groups post-CA/R. The survival rates in the CA/R group at 12, 24, and 48 hours were 62.58%, 36.37%, and 7.8%, respectively. Neuronal loss and BSCB leakage began 12 hours post-CA/R, increasing with time. Reactive astrogliosis appeared at 12 hours and increased, while AEF disruption around blood vessels was evident at 48 hours.
Conclusion
The survival rate declined significantly by 48 hours post-CA/R. Neuronal loss and BSCB leakage in the thoracic spinal cord IMZ was evident at 12 hours and significant by 48 hours, aligning with AEF disruption. Neuronal loss in the thoracic spinal cord IMZ post-CA/R may be related to BSCB leakage and AEF disruption.
4.Visual and Auditory Sensory Impairments Differentially Relate with Alzheimer’s Pathology
Gihwan BYEON ; Min Soo BYUN ; Dahyun YI ; Joon Hyung JUNG ; Nayeong KONG ; Yoonyoung CHANG ; MUSUNG KEUM ; Gijung JUNG ; Hyejin AHN ; Jun-Young LEE ; Yu Kyeong KIM ; Koung Mi KANG ; Chul-Ho SOHN ; Dong Young LEE ;
Clinical Psychopharmacology and Neuroscience 2024;22(4):610-623
Objective:
We intended to investigate the relationships between visual sensory impairment (VSI) or auditory sensory impairment (ASI) and brain pathological changes associated with cognitive decline in older adults.
Methods:
We primarily tried to examine whether each sensory impairment is related to Alzheimer’s disease (AD) pathology, specifically beta-amyloid (Aβ) deposition, through both cross-sectional and longitudinal approaches in cognitively unimpaired older adults. Self-report questionnaires on vision and hearing status were administered at the baseline.Neuroimaging scans including brain [ 11 C] Pittsburgh Compound B PET and MRI, as well as clinical assessments, were performed at baseline and 2-year follow-up.
Results:
Cross-sectional analyses showed that the VSI-positive group had significantly higher Aβ deposition than the VSI-negative group, whereas there was no significant association between ASI positivity and Aβ deposition. Longitudinal analyses revealed that VSI positivity at baseline was significantly associated with increased Aβ deposition over 2 years (β = 0.153, p = 0.025), although ASI positivity was not (β = 0.045, p = 0.518). VSI positivity at baseline was also significantly associated with greater atrophic changes in AD-related brain regions over the 2-year follow-up period (β = −0.207, p = 0.005), whereas ASI positivity was not (β = 0.024, p = 0.753). Neither VSI nor ASI positivity was related to cerebrovascular injury, as measured based on the white matter hyperintensity volume.
Conclusion
The findings suggest that VSI is probably related to AD-specific pathological changes, which possibly mediate the reported relationship between VSI and cognitive decline. In contrast, ASI appears not associated with AD pathologies but may contribute to cognitive decline via other mechanisms.
5.The Moderating Effect of Serum Vitamin D on the Relationship between Beta-amyloid Deposition and Neurodegeneration
Junha PARK ; Min Soo BYUN ; Dahyun YI ; Hyejin AHN ; Joon Hyung JUNG ; Nayeong KONG ; Yoon Young CHANG ; Gijung JUNG ; Jun-Young LEE ; Yu Kyeong KIM ; Yun-Sang LEE ; Koung Mi KANG ; Chul-Ho SOHN ; Dong Young LEE ;
Clinical Psychopharmacology and Neuroscience 2024;22(4):646-654
Objective:
Previous studies have reported that vitamin D deficiency increased the risk of Alzheimer’s disease (AD) dementia in older adults. However, little is known about how vitamin D is involved in the pathophysiology of AD. Thus, this study aimed to examine the association and interaction of serum vitamin D levels with in vivo AD pathologies including cerebral beta-amyloid (Aβ) deposition and neurodegeneration in nondemented older adults.
Methods:
428 Nondemented older adults were recruited from the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer’s Disease, a prospective cohort that began in 2014. All participants underwent comprehensive clinical assessments, measurement of serum 25-hydroxyvitamin D (25[OH]D), and multimodal brain imaging including Pittsburgh compound B (PiB) positron emission tomography and magnetic resonance imaging. Global PiB deposition was measured for the Aβ biomarker. Intracranial volume-adjusted hippocampal volume (HVa) was used as a neurodegeneration biomarker.
Results:
Overall, serum 25(OH)D level was not associated with either Aβ deposition or HVa after controlling for age, sex, apolipoprotein E ε4 positivity, and vascular risk factors. However, serum 25(OH)D level had a significant moderating effect on the association between Aβ and neurodegeneration, with lower serum 25(OH)D level significantly exacerbating cerebral Aβ-associated hippocampal volume loss (B = 34.612, p = 0.008).
Conclusion
Our findings indicate that lower serum vitamin D levels may contribute to AD by exacerbating Aβ-associated neurodegeneration in nondemented older adults. Further studies to explore the potential therapeutic effect of vitamin D supplementation on the progression of AD pathology will be necessary.
6.Lymphadenectomy in clinically early epithelial ovarian cancer and survival analysis (LILAC): a Gynecologic Oncology Research Investigators Collaboration (GORILLA-3002) retrospective study
Eun Jung YANG ; A Jin LEE ; Woo Yeon HWANG ; Suk-Joon CHANG ; Hee Seung KIM ; Nam Kyeong KIM ; Yeorae KIM ; Tae Wook KONG ; Eun Ji LEE ; Soo Jin PARK ; Joo-Hyuk SON ; Dong Hoon SUH ; Dong Hee SON ; Seung-Hyuk SHIM
Journal of Gynecologic Oncology 2024;35(4):e75-
Objective:
This study aimed to evaluate the therapeutic role of lymphadenectomy in patients surgically treated for clinically early-stage epithelial ovarian cancer (EOC).
Methods:
This retrospective, multicenter study included patients with clinically earlystage EOC based on preoperative abdominal-pelvic computed tomography or magnetic resonance imaging findings between 2007 and 2021. Oncologic outcomes and perioperative complications were compared between the lymphadenectomy and non-lymphadenectomy groups. Independent prognostic factors were determined using Cox regression analysis.Disease-free survival (DFS) was the primary outcome. Overall survival (OS) and perioperative outcomes were the secondary outcomes.
Results:
In total, 586 patients (lymphadenectomy group, n=453 [77.3%]; nonlymphadenectomy groups, n=133 [22.7%]) were eligible. After surgical staging, upstaging was identified based on the presence of lymph node metastasis in 14 (3.1%) of 453 patients.No significant difference was found in the 5-year DFS (88.9% vs. 83.4%, p=0.203) and 5-year OS (97.2% vs. 97.7%, p=0.895) between the two groups. Using multivariable analysis, lymphadenectomy was not significantly associated with DFS or OS. However, using subgroup analysis, the lymphadenectomy group with serous histology had higher 5-year DFS rates than did the non-lymphadenectomy group (86.5% vs. 74.4%, p=0.048; adjusted hazard ratio=0.281; 95% confidence interval=0.107–0.735; p=0.010). The lymphadenectomy group had longer operating time (p<0.001), higher estimated blood loss (p<0.001), and higher perioperative complication rate (p=0.004) than did the non-lymphadenectomy group.
Conclusion
In patients with clinically early-stage EOC with serous histology, lymphadenectomy was associated with survival benefits. Considering its potential harm,
7.COL6A1 expression as a potential prognostic biomarker for risk stratification of T1 high grade bladder cancer: Unveiling the aggressive nature of a distinct non-muscle invasive subtype
Kyeong KIM ; Young Joon BYUN ; Chuang-Ming ZHENG ; Sungmin MOON ; Soo Jeong JO ; Ho Won KANG ; Won Tae KIM ; Yung Hyun CHOI ; Sung-Kwon MOON ; Wun-Jae KIM ; Xuan-Mei PIAO ; Seok Joong YUN
Investigative and Clinical Urology 2024;65(1):94-103
Purpose:
T1 high grade (T1HG) bladder cancer (BC) is a type of non-muscle invasive BC (NMIBC) that is recognized as an aggressive subtype with a heightened propensity for progression. Current risk stratification methods for NMIBC rely on clinicopathological indicators; however, these approaches do not adequately capture the aggressive nature of T1HG BC. Thus, new, more accurate biomarkers for T1HG risk stratification are needed. Here, we enrolled three different patient cohorts and investigated expression of collagen type VI alpha 1 (COL6A1), a key component of the extracellular matrix, at different stages and grades of BC, with a specific focus on T1HG BC.
Materials and Methods:
Samples from 298 BC patients were subjected to RNA sequencing and real-time polymerase chain reaction.
Results:
We found that T1HG BC and muscle invasive BC (MIBC) exhibited comparable expression of COL6A1, which was significantly higher than that by other NMIBC subtypes. In particular, T1HG patients who later progressed to MIBC had considerably higher expression of COL6A1 than Ta, T1 low grade patients, and patients that did not progress, highlighting the aggressive nature and higher risk of progression associated with T1HG BC. Moreover, Cox and Kaplan–Meier survival analyses revealed a significant association between elevated expression of COL6A1 and poor progression-free survival of T1HG BC patients (multivariate Cox hazard ratio, 16.812; 95% confidence interval, 3.283–86.095; p=0.001 and p=0.0002 [log-rank test]).
Conclusions
These findings suggest that COL6A1 may be a promising biomarker for risk stratification of T1HG BC, offering valuable insight into disease prognosis and guidance of personalized treatment decisions.
8.Visual and Auditory Sensory Impairments Differentially Relate with Alzheimer’s Pathology
Gihwan BYEON ; Min Soo BYUN ; Dahyun YI ; Joon Hyung JUNG ; Nayeong KONG ; Yoonyoung CHANG ; MUSUNG KEUM ; Gijung JUNG ; Hyejin AHN ; Jun-Young LEE ; Yu Kyeong KIM ; Koung Mi KANG ; Chul-Ho SOHN ; Dong Young LEE ;
Clinical Psychopharmacology and Neuroscience 2024;22(4):610-623
Objective:
We intended to investigate the relationships between visual sensory impairment (VSI) or auditory sensory impairment (ASI) and brain pathological changes associated with cognitive decline in older adults.
Methods:
We primarily tried to examine whether each sensory impairment is related to Alzheimer’s disease (AD) pathology, specifically beta-amyloid (Aβ) deposition, through both cross-sectional and longitudinal approaches in cognitively unimpaired older adults. Self-report questionnaires on vision and hearing status were administered at the baseline.Neuroimaging scans including brain [ 11 C] Pittsburgh Compound B PET and MRI, as well as clinical assessments, were performed at baseline and 2-year follow-up.
Results:
Cross-sectional analyses showed that the VSI-positive group had significantly higher Aβ deposition than the VSI-negative group, whereas there was no significant association between ASI positivity and Aβ deposition. Longitudinal analyses revealed that VSI positivity at baseline was significantly associated with increased Aβ deposition over 2 years (β = 0.153, p = 0.025), although ASI positivity was not (β = 0.045, p = 0.518). VSI positivity at baseline was also significantly associated with greater atrophic changes in AD-related brain regions over the 2-year follow-up period (β = −0.207, p = 0.005), whereas ASI positivity was not (β = 0.024, p = 0.753). Neither VSI nor ASI positivity was related to cerebrovascular injury, as measured based on the white matter hyperintensity volume.
Conclusion
The findings suggest that VSI is probably related to AD-specific pathological changes, which possibly mediate the reported relationship between VSI and cognitive decline. In contrast, ASI appears not associated with AD pathologies but may contribute to cognitive decline via other mechanisms.
9.The Moderating Effect of Serum Vitamin D on the Relationship between Beta-amyloid Deposition and Neurodegeneration
Junha PARK ; Min Soo BYUN ; Dahyun YI ; Hyejin AHN ; Joon Hyung JUNG ; Nayeong KONG ; Yoon Young CHANG ; Gijung JUNG ; Jun-Young LEE ; Yu Kyeong KIM ; Yun-Sang LEE ; Koung Mi KANG ; Chul-Ho SOHN ; Dong Young LEE ;
Clinical Psychopharmacology and Neuroscience 2024;22(4):646-654
Objective:
Previous studies have reported that vitamin D deficiency increased the risk of Alzheimer’s disease (AD) dementia in older adults. However, little is known about how vitamin D is involved in the pathophysiology of AD. Thus, this study aimed to examine the association and interaction of serum vitamin D levels with in vivo AD pathologies including cerebral beta-amyloid (Aβ) deposition and neurodegeneration in nondemented older adults.
Methods:
428 Nondemented older adults were recruited from the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer’s Disease, a prospective cohort that began in 2014. All participants underwent comprehensive clinical assessments, measurement of serum 25-hydroxyvitamin D (25[OH]D), and multimodal brain imaging including Pittsburgh compound B (PiB) positron emission tomography and magnetic resonance imaging. Global PiB deposition was measured for the Aβ biomarker. Intracranial volume-adjusted hippocampal volume (HVa) was used as a neurodegeneration biomarker.
Results:
Overall, serum 25(OH)D level was not associated with either Aβ deposition or HVa after controlling for age, sex, apolipoprotein E ε4 positivity, and vascular risk factors. However, serum 25(OH)D level had a significant moderating effect on the association between Aβ and neurodegeneration, with lower serum 25(OH)D level significantly exacerbating cerebral Aβ-associated hippocampal volume loss (B = 34.612, p = 0.008).
Conclusion
Our findings indicate that lower serum vitamin D levels may contribute to AD by exacerbating Aβ-associated neurodegeneration in nondemented older adults. Further studies to explore the potential therapeutic effect of vitamin D supplementation on the progression of AD pathology will be necessary.
10.Visual and Auditory Sensory Impairments Differentially Relate with Alzheimer’s Pathology
Gihwan BYEON ; Min Soo BYUN ; Dahyun YI ; Joon Hyung JUNG ; Nayeong KONG ; Yoonyoung CHANG ; MUSUNG KEUM ; Gijung JUNG ; Hyejin AHN ; Jun-Young LEE ; Yu Kyeong KIM ; Koung Mi KANG ; Chul-Ho SOHN ; Dong Young LEE ;
Clinical Psychopharmacology and Neuroscience 2024;22(4):610-623
Objective:
We intended to investigate the relationships between visual sensory impairment (VSI) or auditory sensory impairment (ASI) and brain pathological changes associated with cognitive decline in older adults.
Methods:
We primarily tried to examine whether each sensory impairment is related to Alzheimer’s disease (AD) pathology, specifically beta-amyloid (Aβ) deposition, through both cross-sectional and longitudinal approaches in cognitively unimpaired older adults. Self-report questionnaires on vision and hearing status were administered at the baseline.Neuroimaging scans including brain [ 11 C] Pittsburgh Compound B PET and MRI, as well as clinical assessments, were performed at baseline and 2-year follow-up.
Results:
Cross-sectional analyses showed that the VSI-positive group had significantly higher Aβ deposition than the VSI-negative group, whereas there was no significant association between ASI positivity and Aβ deposition. Longitudinal analyses revealed that VSI positivity at baseline was significantly associated with increased Aβ deposition over 2 years (β = 0.153, p = 0.025), although ASI positivity was not (β = 0.045, p = 0.518). VSI positivity at baseline was also significantly associated with greater atrophic changes in AD-related brain regions over the 2-year follow-up period (β = −0.207, p = 0.005), whereas ASI positivity was not (β = 0.024, p = 0.753). Neither VSI nor ASI positivity was related to cerebrovascular injury, as measured based on the white matter hyperintensity volume.
Conclusion
The findings suggest that VSI is probably related to AD-specific pathological changes, which possibly mediate the reported relationship between VSI and cognitive decline. In contrast, ASI appears not associated with AD pathologies but may contribute to cognitive decline via other mechanisms.

Result Analysis
Print
Save
E-mail