1.Plasma metabolite based clustering of breast cancer survivors and identification of dietary and health related characteristics: an application of unsupervised machine learning
Ga-Eun YIE ; Woojin KYEONG ; Sihan SONG ; Zisun KIM ; Hyun Jo YOUN ; Jihyoung CHO ; Jun Won MIN ; Yoo Seok KIM ; Jung Eun LEE
Nutrition Research and Practice 2025;19(2):273-291
BACKGROUND/OBJECTIVES:
This study aimed to use plasma metabolites to identify clusters of breast cancer survivors and to compare their dietary characteristics and health-related factors across the clusters using unsupervised machine learning.
SUBJECTS/METHODS:
A total of 419 breast cancer survivors were included in this crosssectional study. We considered 30 plasma metabolites, quantified by high-throughput nuclear magnetic resonance metabolomics. Clusters were obtained based on metabolites using 4 different unsupervised clustering methods: k-means (KM), partitioning around medoids (PAM), self-organizing maps (SOM), and hierarchical agglomerative clustering (HAC). The t-test, χ2 test, and Fisher’s exact test were used to compare sociodemographic, lifestyle, clinical, and dietary characteristics across the clusters. P-values were adjusted through a false discovery rate (FDR).
RESULTS:
Two clusters were identified using the 4 methods. Participants in cluster 2 had lower concentrations of apolipoprotein A1 and large high-density lipoprotein (HDL) particles and smaller HDL particle sizes, but higher concentrations of chylomicrons and extremely large very-low-density-lipoprotein (VLDL) particles and glycoprotein acetyls, a higher ratio of monounsaturated fatty acids to total fatty acids, and larger VLDL particle sizes compared with cluster 1. Body mass index was significantly higher in cluster 2 compared with cluster 1 (FDR adjusted-PKM < 0.001; PPAM = 0.001; PSOM < 0.001; and PHAC = 0.043).
CONCLUSION
The breast cancer survivors clustered on the basis of plasma metabolites had distinct characteristics. Further prospective studies are needed to investigate the associations between metabolites, obesity, dietary factors, and breast cancer prognosis.
2.Plasma metabolite based clustering of breast cancer survivors and identification of dietary and health related characteristics: an application of unsupervised machine learning
Ga-Eun YIE ; Woojin KYEONG ; Sihan SONG ; Zisun KIM ; Hyun Jo YOUN ; Jihyoung CHO ; Jun Won MIN ; Yoo Seok KIM ; Jung Eun LEE
Nutrition Research and Practice 2025;19(2):273-291
BACKGROUND/OBJECTIVES:
This study aimed to use plasma metabolites to identify clusters of breast cancer survivors and to compare their dietary characteristics and health-related factors across the clusters using unsupervised machine learning.
SUBJECTS/METHODS:
A total of 419 breast cancer survivors were included in this crosssectional study. We considered 30 plasma metabolites, quantified by high-throughput nuclear magnetic resonance metabolomics. Clusters were obtained based on metabolites using 4 different unsupervised clustering methods: k-means (KM), partitioning around medoids (PAM), self-organizing maps (SOM), and hierarchical agglomerative clustering (HAC). The t-test, χ2 test, and Fisher’s exact test were used to compare sociodemographic, lifestyle, clinical, and dietary characteristics across the clusters. P-values were adjusted through a false discovery rate (FDR).
RESULTS:
Two clusters were identified using the 4 methods. Participants in cluster 2 had lower concentrations of apolipoprotein A1 and large high-density lipoprotein (HDL) particles and smaller HDL particle sizes, but higher concentrations of chylomicrons and extremely large very-low-density-lipoprotein (VLDL) particles and glycoprotein acetyls, a higher ratio of monounsaturated fatty acids to total fatty acids, and larger VLDL particle sizes compared with cluster 1. Body mass index was significantly higher in cluster 2 compared with cluster 1 (FDR adjusted-PKM < 0.001; PPAM = 0.001; PSOM < 0.001; and PHAC = 0.043).
CONCLUSION
The breast cancer survivors clustered on the basis of plasma metabolites had distinct characteristics. Further prospective studies are needed to investigate the associations between metabolites, obesity, dietary factors, and breast cancer prognosis.
3.Plasma metabolite based clustering of breast cancer survivors and identification of dietary and health related characteristics: an application of unsupervised machine learning
Ga-Eun YIE ; Woojin KYEONG ; Sihan SONG ; Zisun KIM ; Hyun Jo YOUN ; Jihyoung CHO ; Jun Won MIN ; Yoo Seok KIM ; Jung Eun LEE
Nutrition Research and Practice 2025;19(2):273-291
BACKGROUND/OBJECTIVES:
This study aimed to use plasma metabolites to identify clusters of breast cancer survivors and to compare their dietary characteristics and health-related factors across the clusters using unsupervised machine learning.
SUBJECTS/METHODS:
A total of 419 breast cancer survivors were included in this crosssectional study. We considered 30 plasma metabolites, quantified by high-throughput nuclear magnetic resonance metabolomics. Clusters were obtained based on metabolites using 4 different unsupervised clustering methods: k-means (KM), partitioning around medoids (PAM), self-organizing maps (SOM), and hierarchical agglomerative clustering (HAC). The t-test, χ2 test, and Fisher’s exact test were used to compare sociodemographic, lifestyle, clinical, and dietary characteristics across the clusters. P-values were adjusted through a false discovery rate (FDR).
RESULTS:
Two clusters were identified using the 4 methods. Participants in cluster 2 had lower concentrations of apolipoprotein A1 and large high-density lipoprotein (HDL) particles and smaller HDL particle sizes, but higher concentrations of chylomicrons and extremely large very-low-density-lipoprotein (VLDL) particles and glycoprotein acetyls, a higher ratio of monounsaturated fatty acids to total fatty acids, and larger VLDL particle sizes compared with cluster 1. Body mass index was significantly higher in cluster 2 compared with cluster 1 (FDR adjusted-PKM < 0.001; PPAM = 0.001; PSOM < 0.001; and PHAC = 0.043).
CONCLUSION
The breast cancer survivors clustered on the basis of plasma metabolites had distinct characteristics. Further prospective studies are needed to investigate the associations between metabolites, obesity, dietary factors, and breast cancer prognosis.
4.Plasma metabolite based clustering of breast cancer survivors and identification of dietary and health related characteristics: an application of unsupervised machine learning
Ga-Eun YIE ; Woojin KYEONG ; Sihan SONG ; Zisun KIM ; Hyun Jo YOUN ; Jihyoung CHO ; Jun Won MIN ; Yoo Seok KIM ; Jung Eun LEE
Nutrition Research and Practice 2025;19(2):273-291
BACKGROUND/OBJECTIVES:
This study aimed to use plasma metabolites to identify clusters of breast cancer survivors and to compare their dietary characteristics and health-related factors across the clusters using unsupervised machine learning.
SUBJECTS/METHODS:
A total of 419 breast cancer survivors were included in this crosssectional study. We considered 30 plasma metabolites, quantified by high-throughput nuclear magnetic resonance metabolomics. Clusters were obtained based on metabolites using 4 different unsupervised clustering methods: k-means (KM), partitioning around medoids (PAM), self-organizing maps (SOM), and hierarchical agglomerative clustering (HAC). The t-test, χ2 test, and Fisher’s exact test were used to compare sociodemographic, lifestyle, clinical, and dietary characteristics across the clusters. P-values were adjusted through a false discovery rate (FDR).
RESULTS:
Two clusters were identified using the 4 methods. Participants in cluster 2 had lower concentrations of apolipoprotein A1 and large high-density lipoprotein (HDL) particles and smaller HDL particle sizes, but higher concentrations of chylomicrons and extremely large very-low-density-lipoprotein (VLDL) particles and glycoprotein acetyls, a higher ratio of monounsaturated fatty acids to total fatty acids, and larger VLDL particle sizes compared with cluster 1. Body mass index was significantly higher in cluster 2 compared with cluster 1 (FDR adjusted-PKM < 0.001; PPAM = 0.001; PSOM < 0.001; and PHAC = 0.043).
CONCLUSION
The breast cancer survivors clustered on the basis of plasma metabolites had distinct characteristics. Further prospective studies are needed to investigate the associations between metabolites, obesity, dietary factors, and breast cancer prognosis.
5.Plasma metabolite based clustering of breast cancer survivors and identification of dietary and health related characteristics: an application of unsupervised machine learning
Ga-Eun YIE ; Woojin KYEONG ; Sihan SONG ; Zisun KIM ; Hyun Jo YOUN ; Jihyoung CHO ; Jun Won MIN ; Yoo Seok KIM ; Jung Eun LEE
Nutrition Research and Practice 2025;19(2):273-291
BACKGROUND/OBJECTIVES:
This study aimed to use plasma metabolites to identify clusters of breast cancer survivors and to compare their dietary characteristics and health-related factors across the clusters using unsupervised machine learning.
SUBJECTS/METHODS:
A total of 419 breast cancer survivors were included in this crosssectional study. We considered 30 plasma metabolites, quantified by high-throughput nuclear magnetic resonance metabolomics. Clusters were obtained based on metabolites using 4 different unsupervised clustering methods: k-means (KM), partitioning around medoids (PAM), self-organizing maps (SOM), and hierarchical agglomerative clustering (HAC). The t-test, χ2 test, and Fisher’s exact test were used to compare sociodemographic, lifestyle, clinical, and dietary characteristics across the clusters. P-values were adjusted through a false discovery rate (FDR).
RESULTS:
Two clusters were identified using the 4 methods. Participants in cluster 2 had lower concentrations of apolipoprotein A1 and large high-density lipoprotein (HDL) particles and smaller HDL particle sizes, but higher concentrations of chylomicrons and extremely large very-low-density-lipoprotein (VLDL) particles and glycoprotein acetyls, a higher ratio of monounsaturated fatty acids to total fatty acids, and larger VLDL particle sizes compared with cluster 1. Body mass index was significantly higher in cluster 2 compared with cluster 1 (FDR adjusted-PKM < 0.001; PPAM = 0.001; PSOM < 0.001; and PHAC = 0.043).
CONCLUSION
The breast cancer survivors clustered on the basis of plasma metabolites had distinct characteristics. Further prospective studies are needed to investigate the associations between metabolites, obesity, dietary factors, and breast cancer prognosis.
6.Major clinical research advances in gynecologic cancer in 2023:a tumultuous year for endometrial cancer
Seung-Hyuk SHIM ; Jung-Yun LEE ; Yoo-Young LEE ; Jeong-Yeol PARK ; Yong Jae LEE ; Se Ik KIM ; Gwan Hee HAN ; Eun Jung YANG ; Joseph J NOH ; Ga Won YIM ; Joo-Hyuk SON ; Nam Kyeong KIM ; Tae-Hyun KIM ; Tae-Wook KONG ; Youn Jin CHOI ; Angela CHO ; Hyunji LIM ; Eun Bi JANG ; Hyun Woong CHO ; Dong Hoon SUH
Journal of Gynecologic Oncology 2024;35(2):e66-
In the 2023 series, we summarized the major clinical research advances in gynecologic oncology based on communications at the conference of Asian Society of Gynecologic Oncology Review Course. The review consisted of 1) Endometrial cancer: immune checkpoint inhibitor, antibody drug conjugates (ADCs), selective inhibitor of nuclear export, CDK4/6 inhibitors WEE1 inhibitor, poly (ADP-ribose) polymerase (PARP) inhibitors. 2) Cervical cancer: surgery in low-risk early-stage cervical cancer, therapy for locally advanced stage and advanced, metastatic, or recurrent setting; and 3) Ovarian cancer: immunotherapy, triplet therapies using immune checkpoint inhibitors along with antiangiogenic agents and PARP inhibitors, and ADCs. In 2023, the field of endometrial cancer treatment witnessed a landmark year, marked by several practice-changing outcomes with immune checkpoint inhibitors and the reliable efficacy of PARP inhibitors and ADCs.
7.Major clinical research advances in gynecologic cancer in 2023:a tumultuous year for endometrial cancer
Seung-Hyuk SHIM ; Jung-Yun LEE ; Yoo-Young LEE ; Jeong-Yeol PARK ; Yong Jae LEE ; Se Ik KIM ; Gwan Hee HAN ; Eun Jung YANG ; Joseph J NOH ; Ga Won YIM ; Joo-Hyuk SON ; Nam Kyeong KIM ; Tae-Hyun KIM ; Tae-Wook KONG ; Youn Jin CHOI ; Angela CHO ; Hyunji LIM ; Eun Bi JANG ; Hyun Woong CHO ; Dong Hoon SUH
Journal of Gynecologic Oncology 2024;35(2):e66-
In the 2023 series, we summarized the major clinical research advances in gynecologic oncology based on communications at the conference of Asian Society of Gynecologic Oncology Review Course. The review consisted of 1) Endometrial cancer: immune checkpoint inhibitor, antibody drug conjugates (ADCs), selective inhibitor of nuclear export, CDK4/6 inhibitors WEE1 inhibitor, poly (ADP-ribose) polymerase (PARP) inhibitors. 2) Cervical cancer: surgery in low-risk early-stage cervical cancer, therapy for locally advanced stage and advanced, metastatic, or recurrent setting; and 3) Ovarian cancer: immunotherapy, triplet therapies using immune checkpoint inhibitors along with antiangiogenic agents and PARP inhibitors, and ADCs. In 2023, the field of endometrial cancer treatment witnessed a landmark year, marked by several practice-changing outcomes with immune checkpoint inhibitors and the reliable efficacy of PARP inhibitors and ADCs.
8.Major clinical research advances in gynecologic cancer in 2023:a tumultuous year for endometrial cancer
Seung-Hyuk SHIM ; Jung-Yun LEE ; Yoo-Young LEE ; Jeong-Yeol PARK ; Yong Jae LEE ; Se Ik KIM ; Gwan Hee HAN ; Eun Jung YANG ; Joseph J NOH ; Ga Won YIM ; Joo-Hyuk SON ; Nam Kyeong KIM ; Tae-Hyun KIM ; Tae-Wook KONG ; Youn Jin CHOI ; Angela CHO ; Hyunji LIM ; Eun Bi JANG ; Hyun Woong CHO ; Dong Hoon SUH
Journal of Gynecologic Oncology 2024;35(2):e66-
In the 2023 series, we summarized the major clinical research advances in gynecologic oncology based on communications at the conference of Asian Society of Gynecologic Oncology Review Course. The review consisted of 1) Endometrial cancer: immune checkpoint inhibitor, antibody drug conjugates (ADCs), selective inhibitor of nuclear export, CDK4/6 inhibitors WEE1 inhibitor, poly (ADP-ribose) polymerase (PARP) inhibitors. 2) Cervical cancer: surgery in low-risk early-stage cervical cancer, therapy for locally advanced stage and advanced, metastatic, or recurrent setting; and 3) Ovarian cancer: immunotherapy, triplet therapies using immune checkpoint inhibitors along with antiangiogenic agents and PARP inhibitors, and ADCs. In 2023, the field of endometrial cancer treatment witnessed a landmark year, marked by several practice-changing outcomes with immune checkpoint inhibitors and the reliable efficacy of PARP inhibitors and ADCs.
9.Real-World Eligibility and Cost-Effectiveness Analysis of Empagliflozin for Heart Failure in Korea
Eui-Soon KIM ; Sun-Kyeong PARK ; Jong-Chan YOUN ; Hye Sun LEE ; Hae-Young LEE ; Hyun-Jai CHO ; Jin-Oh CHOI ; Eun-Seok JEON ; Sang Eun LEE ; Min-Seok KIM ; Jae-Joong KIM ; Kyung-Kuk HWANG ; Myeong-Chan CHO ; Shung Chull CHAE ; Seok-Min KANG ; Jin Joo PARK ; Dong-Ju CHOI ; Byung-Su YOO ; Jae Yeong CHO ; Kye Hun KIM ; Byung-Hee OH ; Barry GREENBERG ; Sang Hong BAEK
Journal of Korean Medical Science 2024;39(1):e8-
Background:
The US Food and Drug Administration (FDA) and European Medicines Agency (EMA) approved empagliflozin for reducing cardiovascular mortality and heart failure (HF) hospitalization in patients with both HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF). However, limited data are available on the generalizability of empagliflozin to clinical practice. Therefore, we evaluated real-world eligibility and potential cost-effectiveness based on a nationwide prospective HF registry.
Methods:
A total of 3,108 HFrEF and 2,070 HFpEF patients from the Korean Acute Heart Failure (KorAHF) registry were analyzed. Eligibility was estimated by inclusion and exclusion criteria of EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure With Reduced Ejection Fraction (EMPEROR-Reduced) and EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure With Preserved Ejection Fraction (EMPEROR-Preserved) trials and by FDA & EMA label criteria. The cost-utility analysis was done using a Markov model to project the lifetime medical cost and quality-adjusted life year (QALY).
Results:
Among the KorAHF patients, 91.4% met FDA & EMA label criteria, while 44.7% met the clinical trial criteria. The incremental cost-effectiveness ratio of empagliflozin was calculated at US$6,764 per QALY in the overall population, which is far below a threshold of US$18,182 per QALY. The cost-effectiveness benefit was more evident in patients with HFrEF (US$5,012 per QALY) than HFpEF (US$8,971 per QALY).
Conclusion
There is a large discrepancy in real-world eligibility for empagliflozin between FDA & EMA labels and clinical trial criteria. Empagliflozin is cost-effective in HF patients regardless of ejection fraction in South Korea health care setting. The efficacy and safety of empagliflozin in real-world HF patients should be further investigated for a broader range of clinical applications.
10.Chemosensitivity to doxorubicin in primary cells derived from tumor of FVB/N‑Trp53tm1Hw1 with TALEN‑mediated Trp53 mutant gene
Woobin YUN ; Ji Eun KIM ; You Jeong JIN ; Yu Jeong ROH ; Hee Jin SONG ; Ayun SEOL ; Tae Ryeol KIM ; Kyeong Seon MIN ; Eun Seo PARK ; Gi Ho PARK ; Hyun Gu KANG ; Yeon Shik CHOI ; Dae Youn HWANG
Laboratory Animal Research 2023;39(4):287-297
Background:
To evaluate the chemosensitivity to doxorubicin (DOX) in two primary cells derived from a tumor of FVB/N-Trp53tm1Hw1 knockout (KO) mice with TALEN-mediated Trp53 mutant gene, we evaluated the cell survivability, cell cycle distribution, apoptotic cell numbers and apoptotic protein expression in solid tumor cells and ascetic tumor cells treated with DOX.
Results:
The primary tumor cells showed a significant (P < 0.05) defect for UV-induced upregulation of the Trp53 pro-tein, and consisted of different ratios of leukocytes, fibroblasts, epithelial cells and mesenchymal cells. The IC50 level to DOX was lower in both primary cells (IC50 = 0.12 μM and 0.20 μM) as compared to the CT26 cells (IC50 = 0.32 μM), although the solid tumor was more sensitive. Also, the number of cells arrested at the G0/G1 stage was significantly decreased (24.7–23.1% in primary tumor cells treated with DOX, P < 0.05) while arrest at the G2 stage was enhanced to 296.8–254.3% in DOX-treated primary tumor cells compared with DOX-treated CT26 cells. Furthermore, apoptotic cells of early and late stage were greatly increased in the two primary cell-lines treated with DOX when compared to same conditions for CT26 cells. However, the Bax/Bcl-2 expression level was maintained constant in the primary tumor and CT26 cells.
Conclusions
To the best of our knowledge, these results are the first to successfully detect an alteration in chemosensitivity to DOX in solid tumor cells and ascetic tumor cells derived from tumor of FVB/N-Trp53tm1Hw1 mice TALENmediated Trp53 mutant gene.

Result Analysis
Print
Save
E-mail