1.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
2.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
3.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
4.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
5.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
6.Syncope in Migraine: A Genome-Wide Association Study Revealing Distinct Genetic Susceptibility Variants Across Subtypes
Wei LIN ; Yi LIU ; Chih-Sung LIANG ; Po-Kuan YEH ; Chia-Kuang TSAI ; Kuo-Sheng HUNG ; Yu-Chin AN ; Fu-Chi YANG
Journal of Clinical Neurology 2024;20(6):599-609
Background:
and Purpose Syncope is characterized by the temporary loss of consciousness and is commonly associated with migraine. However, the genetic factors that contribute to this association are not well understood. This study investigated the specific genetic loci that make patients with migraine more susceptible to syncope as well as the genetic factors contributing to syncope and migraine comorbidity in a Han Chinese population in Taiwan.
Methods:
A genome-wide association study was applied to 1,724 patients with migraine who visited a tertiary hospital in Taiwan. The patients were genotyped using the Affymetrix Axiom Genome-Wide TWB 2.0 array and categorized into the following subgroups based on migraine type: episodic migraine, chronic migraine, migraine with aura, and migraine without aura. Multivariate regression analyses were used to assess the relationships between specific single-nucleotide polymorphisms (SNPs) and the clinical characteristics in patients with syncope and migraine comorbidity.
Results:
In patients with migraine, SNPs were observed to be associated with syncope. In particular, the rs797384 SNP located in the intron region of LOC102724945 was associated with syncope in all patients with migraine. Additionally, four SNPs associated with syncope susceptibility were detected in the nonmigraine control group, and these SNPs differed from those in the migraine group, suggesting distinct underlying mechanisms. Furthermore, the rs797384 variant in the intron region of LOC102724945 was associated with the score on the Beck Depression Inventory.
Conclusions
The novel genetic loci identified in this study will improve our understanding of the genetic basis of syncope and migraine comorbidity.
7.Improving auto-segmentation accuracy for online magnetic resonance imaging-guided prostate radiotherapy by registration-based deep learning method
Yunxiang WANG ; Bining YANG ; Yuxiang LIU ; Ji ZHU ; Ning-Ning LU ; Jianrong DAI ; Kuo MEN
Chinese Journal of Medical Physics 2024;41(6):667-672
Objective To improve the performance of auto-segmentation of prostate target area and organs-at-risk in online magnetic resonance image and enhance the efficiency of magnetic resonance imaging-guided adaptive radiotherapy(MRIgART)for prostate cancer.Methods A retrospective study was conducted on 40 patients who underwent MRIgART for prostate cancer,including 25 in the training set,5 in the validation set,and 10 in the test set.The planning CT images and corresponding contours,along with online MR images,were registered and input into a deep learning network for online MR image auto-segmentation.The proposed method was compared with deformable image registration(DIR)method and single-MR-input deep learning(SIDL)method.Results The overall accuracy of the proposed method for auto-segmentation was superior to those of DIR and SIDL methods,with average Dice similarity coefficients of 0.896 for clinical target volume,0.941 for bladder,0.840 for rectum,0.943 for left femoral head and 0.940 for right femoral head,respectively.Conclusion The proposed method can effectively improve the accuracy and efficiency of auto-segmentation in MRIgART for prostate cancer.
8.A method for abnormal detection of fetal monitor data in hospitals based on Euclidean distance
Jianfeng LIU ; Kuo LIAO ; Zezhao YAN ; Shaodong HUANG ; Xiu WANG ; Pengxiang ZHENG
China Medical Equipment 2024;21(11):163-166
In order to meet the accuracy requirements of hospitals for abnormal detection of fetal monitor data,a hospital fetal monitor data anomaly detection method based on Euclidean distance was proposed.In this method,according to the abnormal detection method of fetal monitor data in hospitals,the ultrasound Doppler detector was used to collect fetal heart rate signal data,and the fetal heart rate signal denoising method based on adaptive filtering was used to remove the noise components of the collected fetal heart rate signal.The denoised fetal heart rate signal was used as the identification sample of the abnormal fetal heart rate signal identification method based on Euclidean distance method.The Euclidean distance Euclidean distance between the denoised fetal heart rate signal and the normal fetal heart rate signal was analyzed by combining the Euclidean distance method and the strong classifier to analyze whether the virtual sinusoidal distance between the denoised fetal heart rate signal and the normal fetal heart rate signal was greater than the tuned Euclidean distance threshold.Fetal heart rate signal samples greater than the threshold were classified and diagnosed as abnormal monitoring data.The fetal heart rate information collected by the fetal monitor in the hospital was accurate,and the abnormal detection results were valid and reliable.
9.Feasibility analysis of dose calculation for nasopharyngeal carcinoma radiotherapy planning using MRI-only simulation
Xuejie XIE ; Guoliang ZHANG ; Siqi YUAN ; Yuxiang LIU ; Yunxiang WANG ; Bining YANG ; Ji ZHU ; Xinyuan CHEN ; Kuo MEN ; Jianrong DAI
Chinese Journal of Radiation Oncology 2024;33(5):446-453
Objective:To evaluate the feasibility of using MRI-only simulation images for dose calculation of both photon and proton radiotherapy for nasopharyngeal carcinoma cases.Methods:T 1-weighted MRI images and CT images of 100 patients with nasopharyngeal carcinoma treated with radiotherapy in Cancer Hospital of Chinese Academy of Medical Sciences from January 2020 to December 2021 were retrospectively analyzed. MRI images were converted to generate pseudo-CT images by using deep learning network models. The training set, validation set and test set included 70 cases, 10 cases and 20 cases, respectively. Convolutional neural network (CNN) and cycle-consistent generative adversarial neural network (CycleGAN) were exploited. Quantitative assessment of image quality was conducted by using mean absolute error (MAE) and structural similarity (SSIM), etc. Dose assessment was performed by using 3D-gamma pass rate and dose-volume histogram (DVH). The quality of pseudo-CT images generated was statistically analyzed by Wilcoxon signed-rank test. Results:The MAE of the CNN and CycleGAN was (91.99±19.98) HU and (108.30±20.54) HU, and the SSIM was 0.97±0.01 and 0.96±0.01, respectively. In terms of dosimetry, the accuracy of pseudo-CT for photon dose calculation was higher than that of the proton plan. For CNN, the gamma pass rate (3 mm/3%) of the photon radiotherapy plan was 99.90%±0.13%. For CycleGAN, the value was 99.87%±0.34%. The gamma pass rates of proton radiotherapy plans were 98.65%±0.64% (CNN, 3 mm/3%) and 97.69%±0.86% (CycleGAN, 3 mm/3%). For DVH, the dose calculation accuracy in the photon plan of pseudo-CT was better than that of the proton plan.Conclusions:The deep learning-based model generated accurate pseudo-CT images from MR images. Most dosimetric differences were within clinically acceptable criteria for photon and proton radiotherapy, demonstrating the feasibility of an MRI-only workflow for radiotherapy of nasopharyngeal cancer. However, compared with the raw CT images, the error of the CT value in the nasal cavity of the pseudo-CT images was relatively large and special attention should be paid during clinical application.
10.Effects of community building environment and sports with fitness APP usage on physical exercise habits in teachers in the Yangtze River Delta Region
WU Jin, LUO Yan, ZHANG Jiuyang, LIU Kuo, YANG Yuhang, LI Liqiang, LI Weimin
Chinese Journal of School Health 2024;45(3):341-345
Objective:
To explore the effects of community building environment and sports with fitness APP usage and their interactions on teachers exercise habits in the Yangtze River Delta Region, so as to provide a scientific basis for the development of a sports and health promotion intervention program for teachers.
Methods:
A total of 2 530 in service teachers from four provinces and cities in the Yangtze River Delta region, namely, Shanghai, Zhejiang, Jiangsu and Anhui Province, were sampled in May-June 2023 by using convenient cluster random sampling method. Self designed questionnaire was used to collect the basic information of the surveyed teachers, Physical Activity Building Environment Evaluation Questionnaire and the Sports with Fitness APP Usage Questionnaire were used to measure the teachers subjective perception of the community building environment and the usage of sports with fitness APP, respectively. Physical Exercise Habituation Scale was used to assess the level of exercise habits. Logistic regression models were applied to analyze the effects of community building environment and sports with fitness APP usage on physical exercise, and the interaction effects were analyzed by using additive and multiplicative models.
Results:
Among all the teachers surveyed, 658 of them reported good physical exercise habits (26.0%), and differences in the rate of physical activity habit formation by gender, age, years of teaching, as well as subject of teaching were statistically significant ( χ 2=42.94, 39.73, 35.47, 218.23 , P <0.05). Teachers with physical exercise habits had significantly higher community building environment scores and sports and fitness APP use than teachers without exercise habits ( t =12.17,16.54, P <0.05). Adjusting for the confounders of age, gender, years of teaching experience, and subjects taught, multifactorial unconditional Logistic regression analysis showed that the probability of teachers having good physical exercise habits increased by 22% for every 1-point increase in the community building environment score on average ( OR =1.22, 95% CI =1.11-1.40), and the probability of teachers having good physical exercise habits increased by 16% for every 1-point increase in the sports with fitness APP score on average ( OR = 1.16 , 95% CI =1.03-1.31) ( P <0.05). Interaction analyses showed that there was an additive interaction between the effects of community building environment and sports and fitness APP use on teachers physical exercise habits after adjustment, and the 95% CI for RERI , API and SI were 1.17 -1.65, 0.12-0.46 and 1.78-3.33 ( P <0.05), respectively, and there was no multiplicative interaction ( P >0.05).
Conclusions
The community building environment and the usage of sports & fitness APP show impacts in the formation of teachers physical exercise habits in the Yangtze River Delta region, and there is an interaction effect. Enhancing the construction of smart sports centers around the community can provide a high quality external environment for the physical exercise habits formation.


Result Analysis
Print
Save
E-mail