1.Adaptive multi-view learning method for enhanced drug repurposing using chemical-induced transcriptional profiles, knowledge graphs, and large language models.
Yudong YAN ; Yinqi YANG ; Zhuohao TONG ; Yu WANG ; Fan YANG ; Zupeng PAN ; Chuan LIU ; Mingze BAI ; Yongfang XIE ; Yuefei LI ; Kunxian SHU ; Yinghong LI
Journal of Pharmaceutical Analysis 2025;15(6):101275-101275
Drug repurposing offers a promising alternative to traditional drug development and significantly reduces costs and timelines by identifying new therapeutic uses for existing drugs. However, the current approaches often rely on limited data sources and simplistic hypotheses, which restrict their ability to capture the multi-faceted nature of biological systems. This study introduces adaptive multi-view learning (AMVL), a novel methodology that integrates chemical-induced transcriptional profiles (CTPs), knowledge graph (KG) embeddings, and large language model (LLM) representations, to enhance drug repurposing predictions. AMVL incorporates an innovative similarity matrix expansion strategy and leverages multi-view learning (MVL), matrix factorization, and ensemble optimization techniques to integrate heterogeneous multi-source data. Comprehensive evaluations on benchmark datasets (Fdataset, Cdataset, and Ydataset) and the large-scale iDrug dataset demonstrate that AMVL outperforms state-of-the-art (SOTA) methods, achieving superior accuracy in predicting drug-disease associations across multiple metrics. Literature-based validation further confirmed the model's predictive capabilities, with seven out of the top ten predictions corroborated by post-2011 evidence. To promote transparency and reproducibility, all data and codes used in this study were open-sourced, providing resources for processing CTPs, KG, and LLM-based similarity calculations, along with the complete AMVL algorithm and benchmarking procedures. By unifying diverse data modalities, AMVL offers a robust and scalable solution for accelerating drug discovery, fostering advancements in translational medicine and integrating multi-omics data. We aim to inspire further innovations in multi-source data integration and support the development of more precise and efficient strategies for advancing drug discovery and translational medicine.
2.An antibacterial peptides recognition method based on BERT and Text-CNN.
Xiaofang XU ; Chunde YANG ; Kunxian SHU ; Xinpu YUAN ; Mocheng LI ; Yunping ZHU ; Tao CHEN
Chinese Journal of Biotechnology 2023;39(4):1815-1824
Antimicrobial peptides (AMPs) are small molecule peptides that are widely found in living organisms with broad-spectrum antibacterial activity and immunomodulatory effect. Due to slower emergence of resistance, excellent clinical potential and wide range of application, AMP is a strong alternative to conventional antibiotics. AMP recognition is a significant direction in the field of AMP research. The high cost, low efficiency and long period shortcomings of the wet experiment methods prevent it from meeting the need for the large-scale AMP recognition. Therefore, computer-aided identification methods are important supplements to AMP recognition approaches, and one of the key issues is how to improve the accuracy. Protein sequences could be approximated as a language composed of amino acids. Consequently, rich features may be extracted using natural language processing (NLP) techniques. In this paper, we combine the pre-trained model BERT and the fine-tuned structure Text-CNN in the field of NLP to model protein languages, develop an open-source available antimicrobial peptide recognition tool and conduct a comparison with other five published tools. The experimental results show that the optimization of the two-phase training approach brings an overall improvement in accuracy, sensitivity, specificity, and Matthew correlation coefficient, offering a novel approach for further research on AMP recognition.
Anti-Bacterial Agents/chemistry*
;
Amino Acid Sequence
;
Antimicrobial Cationic Peptides/chemistry*
;
Antimicrobial Peptides
;
Natural Language Processing
3.Study of the Relationship Among MVD,the Expression of Neu Gene and Estrogen Receptor and Prognosis in 94 Cases of Early Breast Cancer
Kunxian YANG ; Kunping CHI ; Ling JIA
Journal of Chinese Physician 2001;0(09):-
Objective To investigate the relationship among microvessel density (MVD),the expressions of Neu gene and estrogen receptor(ER) and prognosis in early breast cancer.Methods MVD,the expression of Neu gene and ER was examined in radical operation samples from 94 cases of breast cancer without lymphatic metastatis.Results The MVD, expression of Neu gene and ER in 94 cases of early breast cancer were 35 4?9 8,44 percent(41/94),61 percent (58/94)respectively;Three years after operation,16 cases had relapse in 94 cases of early breast cancer. The MVD of the relapse cases were 42 5?10 6, which was higher than that of non-relapse,whose MVD was 31 4?8 7,there was obvious difference(P0 05).Conclusions Whether there is a lymphoglandula metastasis is an important factor in evaluating prognosis of breast cancer.After radical operation there still are partly replase case in the breast cancer without lymphoglandula metastasis.MVD and Neu gene expression are important factors to estimate prognosis of the early breast cancer.Breast cancer which has higher MVD and Neu gene expression has worse prognosis than that of lower MVD and negative Neu gene expression. [

Result Analysis
Print
Save
E-mail