1.Key gene screening and prediction model construction of gastric cancer based on machine learning
Zepeng WANG ; Kunpeng LI ; Yu ZHOU ; Sihai LI
Chinese Journal of Medical Physics 2024;41(1):115-124
Objective To verify the genetic characteristics associated with gastric cancer,and to propose a hybrid feature selection method for identifying target genes,further analyzing their significance and establishing a new diagnostic prediction model.Methods Analysis of variance in bioinformatics was performed on the original gastric cancer data,and then machine learning methods such as random forest,recursive feature elimination of support vector machine,and LASSO algorithm were used to screen gastric cancer associated genes,and the intersection of results was taken as the key gene set.The key genes were identified and verified through enrichment analysis.The diagnosis and prediction models based on 8 kinds of machine learning classification algorithms such as multi-layer perceptron,logistic regression and decision tree,were constructed using the key genes.Results The key genes selected by the hybrid feature selection method were closely related to the tumorigenesis and development.Eight key genes(TXNDC5,BMP8A,ONECUT2,COL10A1,JCHAIN,INHBA,LCTL and TRIM59)were identified as potential markers of good diagnostic efficacy in gastric cancer.The ROC curve and accuracy results demonstrated that among the 8 classification models,MLP is the best gastric cancer prediction model,with an accuracy of 97.77%,which was 3.83%higher than that of Xgboost gastric cancer prediction model.Conclusion The study identifies 8 key genes for the diagnosis and prevention of gastric cancer,and establishes the optimal prognosis model.
2.Review on application of artificial intelligence in tumor gene expression data analysis
Kunpeng LI ; Zepeng WANG ; Yu ZHOU ; Sihai LI
Chinese Journal of Medical Physics 2024;41(3):389-396
Tumors are serious diseases threatening human health,and the early diagnosis is essential to improve treatment success and patient survival.The study of tumor gene expression data has become a major tool for revealing tumor disease mechanisms,in which artificial intelligence plays an important role.The potential advantages of supervised learning,unsupervised learning and deep learning in tumor prediction and classification are explored from the perspective of machine learning methods.Special attention is paid to the impact of feature selection algorithms on gene screening and their importance in high-dimensional gene expression data.By providing a comprehensive overview of the application and development of artificial intelligence in the analysis of tumor gene expression data,the study aims to provide an outlook for future research directions and promote further development.
3.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
4.National bloodstream infection bacterial resistance surveillance report(2022): Gram-positive bacteria
Chaoqun YING ; Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(2):99-112
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-positive bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-positive bacteria from blood cultures in member hospitals of National Bloodstream Infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:A total of 3 163 strains of Gram-positive pathogens were collected from 51 member units,and the top five bacteria were Staphylococcus aureus( n=1 147,36.3%),coagulase-negative Staphylococci( n=928,29.3%), Enterococcus faecalis( n=369,11.7%), Enterococcus faecium( n=296,9.4%)and alpha-hemolyticus Streptococci( n=192,6.1%). The detection rates of methicillin-resistant Staphylococcus aureus(MRSA)and methicillin-resistant coagulase-negative Staphylococci(MRCNS)were 26.4%(303/1 147)and 66.7%(619/928),respectively. No glycopeptide and daptomycin-resistant Staphylococci were detected. The sensitivity rates of Staphylococcus aureus to cefpirome,rifampin,compound sulfamethoxazole,linezolid,minocycline and tigecycline were all >95.0%. Enterococcus faecium was more prevalent than Enterococcus faecalis. The resistance rates of Enterococcus faecium to vancomycin and teicoplanin were both 0.5%(2/369),and no vancomycin-resistant Enterococcus faecium was detected. The detection rate of MRSA in southern China was significantly lower than that in other regions( χ2=14.578, P=0.002),while the detection rate of MRCNS in northern China was significantly higher than that in other regions( χ2=15.195, P=0.002). The detection rates of MRSA and MRCNS in provincial hospitals were higher than those in municipal hospitals( χ2=13.519 and 12.136, P<0.001). The detection rates of MRSA and MRCNS in economically more advanced regions(per capita GDP≥92 059 Yuan in 2022)were higher than those in economically less advanced regions(per capita GDP<92 059 Yuan)( χ2=9.969 and 7.606, P=0.002和0.006). Conclusions:Among the Gram-positive pathogens causing bloodstream infections in China, Staphylococci is the most common while the MRSA incidence decreases continuously with time;the detection rate of Enterococcus faecium exceeds that of Enterococcus faecalis. The overall prevalence of vancomycin-resistant Enterococci is still at a low level. The composition ratio of Gram-positive pathogens and resistant profiles varies slightly across regions of China,with the prevalence of MRSA and MRCNS being more pronounced in provincial hospitals and areas with a per capita GDP≥92 059 yuan.
5.BRICS report of 2021: The distribution and antimicrobial resistance profile of clinical bacterial isolates from blood stream infections in China
Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Jiliang WANG ; Hui DING ; Haifeng MAO ; Yizheng ZHOU ; Yan JIN ; Yongyun LIU ; Yan GENG ; Yuanyuan DAI ; Hong LU ; Peng ZHANG ; Ying HUANG ; Donghong HUANG ; Xinhua QIANG ; Jilu SHEN ; Hongyun XU ; Fenghong CHEN ; Guolin LIAO ; Dan LIU ; Haixin DONG ; Jiangqin SONG ; Lu WANG ; Junmin CAO ; Lixia ZHANG ; Yanhong LI ; Dijing SONG ; Zhuo LI ; Youdong YIN ; Donghua LIU ; Liang GUO ; Qiang LIU ; Baohua ZHANG ; Rong XU ; Yinqiao DONG ; Shuyan HU ; Kunpeng LIANG ; Bo QUAN ; Lin ZHENG ; Ling MENG ; Liang LUAN ; Jinhua LIANG ; Weiping LIU ; Xuefei HU ; Pengpeng TIAN ; Xiaoping YAN ; Aiyun LI ; Jian LI ; Xiusan XIA ; Xiaoyan QI ; Dengyan QIAO ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2023;16(1):33-47
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical bacterial isolates from bloodstream infections in China in 2021.Methods:The clinical bacterial strains isolated from blood culture from member hospitals of Blood Bacterial Resistant Investigation Collaborative System (BRICS) were collected during January 2021 to December 2021. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical Laboratory Standards Institute (CLSI). WHONET 5.6 was used to analyze data.Results:During the study period, 11 013 bacterial strains were collected from 51 hospitals, of which 2 782 (25.3%) were Gram-positive bacteria and 8 231 (74.7%) were Gram-negative bacteria. The top 10 bacterial species were Escherichia coli (37.6%), Klebsiella pneumoniae (18.9%), Staphylococcus aureus (9.8%), coagulase-negative Staphylococci (6.3%), Pseudomonas aeruginosa (3.6%), Enterococcus faecium (3.6%), Acinetobacter baumannii (2.8%), Enterococcus faecalis (2.7%), Enterobacter cloacae (2.5%) and Klebsiella spp (2.1%). The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus aureus were 25.3% and 76.8%, respectively. No glycopeptide- and daptomycin-resistant Staphylococci was detected; more than 95.0% of Staphylococcus aureus were sensitive to ceftobiprole. No vancomycin-resistant Enterococci strains were detected. The rates of extended spectrum B-lactamase (ESBL)-producing isolated in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis were 49.6%, 25.5% and 39.0%, respectively. The prevalence rates of carbapenem-resistance in Escherichia coli and Klebsiella pneumoniae were 2.2% and 15.8%, respectively; 7.9% of carbapenem-resistant Klebsiella pneumoniae was resistant to ceftazidime/avibactam combination. Ceftobiprole demonstrated excellent activity against non-ESBL-producing Escherichia coli and Klebsiella pneumoniae. Aztreonam/avibactam was highly active against carbapenem-resistant Escherichia coli and Klebsiella pneumoniae. The prevalence rate of carbapenem-resistance in Acinetobacter baumannii was 60.0%, while polymyxin and tigecycline showed good activity against Acinetobacter baumannii (5.5% and 4.5%). The prevalence of carbapenem-resistance in Pseudomonas aeruginosa was 18.9%. Conclusions:The BRICS surveillance results in 2021 shows that the main pathogens of blood stream infection in China are gram-negative bacteria, in which Escherichia coli is the most common. The MRSA incidence shows a further decreasing trend in China and the overall prevalence of vancomycin-resistant Enterococci is low. The prevalence of Carbapenem-resistant Klebsiella pneumoniae is still on a high level, but the trend is downwards.
6.Analysis of choroidal thickness and blood perfusion in idiopathic macular hole eye
Haiyan ZHU ; Ju GUO ; Pengyi ZHOU ; Bo JIN ; Kunpeng XIE ; Liping DU ; Xuemin JIN
Chinese Journal of Ocular Fundus Diseases 2022;38(9):755-761
Objective:To observe and analyze the macular choroidal thickness and choroidal blood perfusion (CBP) in eyes with idiopathic macular hole (IMH) and their correlation.Methods:A cross-sectional observational clinical study. From March 2019 to October 2021, 60 IMH patients with 60 eyes (IMH group) and 60 healthy volunteers with 60 eyes (control group) who consecutively visited Department of Ophthalmology of The First Affiliated Hospital of Zhengzhou University were included in the study. Among the 60 eyes in the IMH group, 8, 8, 15, and 29 eyes were at stage Ⅰ, Ⅱ, Ⅲ, and Ⅳ, respectively. There was no significant difference in age, spherical equivalent power and axial length between the two groups ( t=1.327, 0.157, 0.542; P>0.05). The average macular choriodal thickness (AMCT) and CBP in different regions of the macular region of the examined eye were measured using a swept-frequency light source optical coherence tomography scanner. According to the zoning method for the treatment of diabetic retinopathy, the choroid within 6 mm of the fovea was divided into 3 concentric circles with the fovea as the center. They are the central area with a diameter of 1 mm, the inner ring area of 1-3 mm, and the outer ring area of 3-6 mm; the inner ring area and the outer ring area were divided into 4 areas by 2 radiations respectively, including the upper part of the inner superior (IS), the lower part of the inner inferior (Ⅱ ), and the nasal side of the inner nasal (IN), inner temporal (IT), outer superior (OS), outer inferior (OI), outer nasal (ON), outer temporal (OT), a total of 9 regions. The distribution characteristics of AMCT and CBP in different regions were observed. The correlation between AMCT and CBP was analyzed by Pearson correlation; the correlation between AMCT, CBP and IMH stage was analyzed by Spearman correlation. Results:Compared with the eyes of the control group, the AMCT of the affected eyes in the IMH group was significantly thinner in all areas of the macula, and the difference was statistically significant ( t=2.378, 4.641, 2.888, 3.390, 3.575, 4.870, 4.077, 4.946, 4.578; P<0.05). Compared with the control group, the CBP in the OS and OT regions of the affected eyes in the IMH group was significantly lower, the difference was statistically significant ( t=3.424, 4.516; P<0.05). The results of Pearson correlation analysis showed that there was a significant positive correlation between AMCT and CBP in the OT region ( r=0.314, P<0.001). Spearman correlation analysis showed that there was a significant positive correlation between AMCT and IMH staging in each region ( r=0.375, 0.374, 0.289, 0.379, 0.441, 0.392, 0.303, 0.341, 0.292; P<0.05). There was no significant correlation between CBP and IMH staging in IN, OI and OT regions ( r=-0.138, -0.016, -0.221; P>0.05); CBP and IMH staging in other regions were significantly negatively correlated ( r=-0.560, -0.390,-0.819, -0.692, -0.329, -0.587; P<0.05). Conclusions:The choroidal thickness in the macular region of the eyes with IMH is significantly thinner than that of the normal subjects; there is choroidal hypoperfusion in local areas. There is a significant positive correlation between local regional AMCT and CBP; IMH stage is higher, the trend of AMCT in each region is thickening, and the CBP in most regions decrease.
7.Analysis of BEST1 gene mutation and clinical phenotype in two families with Best vitelliform macular dystrophy and autosomal recessive bestrophinopathy
Meng PAN ; Kunpeng XIE ; Liping DU ; Pengyi ZHOU ; Xuemin JIN
Chinese Journal of Ocular Fundus Diseases 2021;37(11):841-847
Objective:To report the BEST1 gene mutations and clinical phenotypes in two pedigrees with Best vitelliform macular dystrophy (BVMD) and autosomal recessive bestrophinopathy (ARB). Methods:A retrospective clinical study. From November 2019 to March 2021, in the Department of Ophthalmology of The First Affiliated Hospital of Zhengzhou University, the BVMD family (4 patients and 6 family members) and the ARB family (2 patients, 2 family members), a total of 6 patients and 8 normal family members were included in the study. Detailed medical history was obtained; best corrected visual acuity, fundus color photography, electrophysiology, optical coherence tomography and fundus autofluorescence examination were performed. The clinical characteristics for all patients in the two families were analyzed. Three milliliter peripheral venous blood of all participants in the family was collected, and the whole genomic DNA was extracted with gene sequencing using next-generation sequencing technology based on targeted capture. Compared with the database to identify the pathogenicity mutation sites, suspected pathogenic mutation sites were selected, then mutations in other members in the family was assayed by Sanger sequencing.Results:In family 1, the proband was demonstrated as typical BVMD, other patients were multifocal vitelliform macular dystrophy. The DNA sequencing result showed that all the 4 patients carried heterozygous missense mutations in exon 3 of BEST1 gene: c.240C>G (p.F80L) (M1) and 2 members carried this mutation, but without clinical phenotype. M1 was a likely-pathogenic mutation reported for the first time. In family 2, the proband and the other patient were diagnosed as ARB. The DNA result showed that the 2 patients carried heterozygous missense mutations in exon 5 and exon 2 of BEST1 gene: c.584C>T (p.A195V) (M2)、c.139C>A (p.R47S) (M3), and a heterozygous frameshift mutation in exon 3 of BEST1 gene: c.235dupT (p.S79Ffs*153) (M4). M2 was a pathogenic mutation reported previously. M3 variant was of undetermined significance. M4 was a first reported pathogenic mutation. Conclusions:The BEST1 gene mutation is the main cause of BVMD and ARB. Different mutation sites have different clinical phenotypes. BVMD and ARB have genetic and clinical heterogeneity.
8.BRICS report of 2020: The bacterial composition and antimicrobial resistance profile of clinical isolates from bloodstream infections in China
Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Yuanyuan DAI ; Jiliang WANG ; Haifeng MAO ; Hui DING ; Yongyun LIU ; Yizheng ZHOU ; Hong LU ; Youdong YIN ; Yan JIN ; Hongyun XU ; Lixia ZHANG ; Lu WANG ; Haixin DONG ; Zhenghai YANG ; Fenghong CHEN ; Donghong HUANG ; Guolin LIAO ; Pengpeng TIAN ; Dan LIU ; Yan GENG ; Sijin MAN ; Baohua ZHANG ; Ying HUANG ; Liang GUO ; Junmin CAO ; Beiqing GU ; Yanhong LI ; Hongxia HU ; Liang LUAN ; Shuyan HU ; Lin ZHENG ; Aiyun LI ; Rong XU ; Kunpeng LIANG ; Zhuo LI ; Donghua LIU ; Bo QUAN ; Qiang LIU ; Jilu SHEN ; Yiqun LIAO ; Hai CHEN ; Qingqing BAI ; Xiusan XIA ; Shifu WANG ; Jinhua LIANG ; Liping ZHANG ; Yinqiao DONG ; Xiaoyan QI ; Jianzhong WANG ; Xuefei HU ; Xiaoping YAN ; Dengyan QIAO ; Ling MENG ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2021;14(6):413-426
Objective:To investigate the bacterial composition and antimicrobial resistance profile of clinical isolates from bloodstream infections in China.Methods:The clinical bacterial strains isolated from blood culture were collected during January 2020 to December 2020 in member hospitals of Blood Bacterial Resistant Investigation Collaborative System (BRICS). Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical Laboratory Standards Institute(CLSI, USA). WHONET 5.6 was used to analyze data.Results:During the study period, 10 043 bacterial strains were collected from 54 hospitals, of which 2 664 (26.5%) were Gram-positive bacteria and 7 379 (73.5%) were Gram-negative bacteria. The top 10 bacterial species were Escherichia coli (38.6%), Klebsiella pneumoniae (18.4%), Staphylococcus aureus (9.9%), coagulase-negative Staphylococci (7.5%), Pseudomonas aeruginosa (3.9%), Enterococcus faecium (3.3%), Enterobacter cloacae (2.8%), Enterococcus faecalis (2.6%), Acinetobacter baumannii (2.4%) and Klebsiella spp (1.8%). The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus aureus were 27.6% and 74.4%, respectively. No glycopeptide- and daptomycin-resistant Staphylococci were detected. More than 95% of Staphylococcus aureus were sensitive to rifampicin and SMZco. No vancomycin-resistant Enterococci strains were detected. Extended spectrum β-lactamase (ESBL) producing Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis were 48.4%, 23.6% and 36.1%, respectively. The prevalence rates of carbapenem-resistance in Escherichia coli and Klebsiella pneumoniae were 2.3% and 16.1%, respectively; 9.6% of carbapenem-resistant Klebsiella pneumoniae strains were resistant to ceftazidime/avibactam combination. The prevalence rate of carbapenem-resistance in Acinetobacter baumannii was 60.0%, while polymyxin and tigecycline showed good activity against Acinetobacter baumannii. The prevalence rate of carbapenem-resistance of Pseudomonas aeruginosa was 23.2%. Conclusions:The surveillance results in 2020 showed that the main pathogens of bloodstream infection in China were gram-negative bacteria, while Escherichia coli was the most common pathogen, and ESBL-producing strains declined while carbapenem-resistant Klebsiella pneumoniae kept on high level. The proportion and the prevalence of carbapenem-resistant Pseudomonas aeruginosa were on the rise slowly. On the other side, the MRSA incidence got lower in China, while the overall prevalence of vancomycin-resistant Enterococci was low.
9.Effects of highly active anti-retroviral therapy on the viral reservoir in prostate tissue of human immunodeficiency virus/acquired immunodeficiency syndrome patients
Lixin FAN ; Xiongcai ZHOU ; Xunrong ZHU ; Chaoxiong DONG ; Kunpeng LIU ; Chengsong LI ; Zhihua WANG ; Xiaosheng LI
Chinese Journal of Infectious Diseases 2021;39(2):70-73
Objective:To investigate the status of viral reservoirs in prostate tissue of patients with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS), and to investigate the effect of highly active anti-retroviral therapy (HAART) on HIV-1 DNA in prostate tissue of HIV/AIDS patients.Methods:Twelve patients with HIV infection and hyperplasia of prostate who required surgical treatment and admitted to Guangzhou Eighth People′s Hospital from July 2017 to October 2019 were included. Blood and prostate specimens of these patients were collected, and HIV-1 RNA in plasma, CD4 + T lymphocyte count in peripheral blood and HIV-1 DNA level in prostate tissue were tested respectively. The independent sample t test or Mann-Whitney U test was used for statistical analysis. Results:Among the 12 patients, the CD4 + T lymphocytes was (519.8±121.5)/μL and HIV-1 DNA in the prostate tissue was 2 602 (365, 10 700) copies/10 6cells in six patients who had not started HAART. The CD4 + T lymphocytes was (182.8±69.7)/μL and the HIV-1 DNA in the prostate tissue was 144 (36, 563) copies/10 6cells in the six patients who underwent HAART for over six months. There were statistically significant differences in CD4 + T lymphocytes and HIV-1 DNA in the prostate tissue between the two groups ( t=-5.889 and Z=-2.082, respectively, both P<0.05). Conclusion:Prostate tissue can be used as an HIV-1 virus repository with or without HAART, and the size of the prostate tissue virus repository can be reduced by HAART after immune reconstitution.
10.BRICS report of 2018-2019: the distribution and antimicrobial resistance profile of clinical isolates from blood culture in China
Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Peipei WANG ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Hui DING ; Yongyun LIU ; Haifeng MAO ; Ying HUANG ; Zhenghai YANG ; Yuanyuan DAI ; Guolin LIAO ; Lisha ZHU ; Liping ZHANG ; Yanhong LI ; Hongyun XU ; Junmin CAO ; Baohua ZHANG ; Liang GUO ; Haixin DONG ; Shuyan HU ; Sijin MAN ; Lu WANG ; Zhixiang LIAO ; Rong XU ; Dan LIU ; Yan JIN ; Yizheng ZHOU ; Yiqun LIAO ; Fenghong CHEN ; Beiqing GU ; Jiliang WANG ; Jinhua LIANG ; Lin ZHENG ; Aiyun LI ; Jilu SHEN ; Yinqiao DONG ; Lixia ZHANG ; Hongxia HU ; Bo QUAN ; Wencheng ZHU ; Kunpeng LIANG ; Qiang LIU ; Shifu WANG ; Xiaoping YAN ; Jiangbang KANG ; Xiusan XIA ; Lan MA ; Li SUN ; Liang LUAN ; Jianzhong WANG ; Zhuo LI ; Dengyan QIAO ; Lin ZHANG ; Lanjuan LI ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2021;14(1):32-45
Objective:To investigate the distribution and antimicrobial resistance profile of clinical bacteria isolated from blood culture in China.Methods:The clinical bacterial strains isolated from blood culture from member hospitals of Blood Bacterial Resistant Investigation Collaborative System (BRICS) were collected during January 2018 to December 2019. Antibiotic susceptibility tests were conducted with agar dilution or broth dilution methods recommended by US Clinical and Laboratory Standards Institute (CLSI). WHONET 5.6 was used to analyze data.Results:During the study period, 14 778 bacterial strains were collected from 50 hospitals, of which 4 117 (27.9%) were Gram-positive bacteria and 10 661(72.1%) were Gram-negative bacteria. The top 10 bacterial species were Escherichia coli (37.2%), Klebsiella pneumoniae (17.0%), Staphylococcus aureus (9.7%), coagulase-negative Staphylococci (8.7%), Pseudomonas aeruginosa (3.7%), Enterococcus faecium (3.4%), Acinetobacter baumannii(3.4%), Enterobacter cloacae (2.9%), Streptococci(2.8%) and Enterococcus faecalis (2.3%). The the prevalence of methicillin-resistant S. aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus were 27.4% (394/1 438) and 70.4% (905/1 285), respectively. No glycopeptide-resistant Staphylococcus was detected. More than 95% of S. aureus were sensitive to amikacin, rifampicin and SMZco. The resistance rate of E. faecium to vancomycin was 0.4% (2/504), and no vancomycin-resistant E. faecalis was detected. The ESBLs-producing rates in no carbapenem-resistance E. coli, carbapenem sensitive K. pneumoniae and Proteus were 50.4% (2 731/5 415), 24.6% (493/2001) and 35.2% (31/88), respectively. The prevalence of carbapenem-resistance in E. coli and K. pneumoniae were 1.5% (85/5 500), 20.6% (518/2 519), respectively. 8.3% (27/325) of carbapenem-resistance K. pneumoniae was resistant to ceftazidime/avibactam combination. The resistance rates of A. baumannii to polymyxin and tigecycline were 2.8% (14/501) and 3.4% (17/501) respectively, and that of P. aeruginosa to carbapenem were 18.9% (103/546). Conclusions:The surveillance results from 2018 to 2019 showed that the main pathogens of bloodstream infection in China were gram-negative bacteria, while E. coli was the most common pathogen, and ESBLs-producing strains were in majority; the MRSA incidence is getting lower in China; carbapenem-resistant E. coli keeps at a low level, while carbapenem-resistant K. pneumoniae is on the rise obviously.

Result Analysis
Print
Save
E-mail