1.Research progress in asexual reproduction technology of Callicarpa.
Yi-Teng ZHANG ; Jin-Feng XU ; Lin FANG ; Lin LI ; Kun-Lin WU ; Song-Jun ZENG
China Journal of Chinese Materia Medica 2025;50(6):1507-1514
Callicarpa is an important medicinal plant in China, which has hemostatic, antibacterial, and antioxidant pharmacological effects, and the efficacy of astringing and arresting bleeding, clearing heat and detoxification, activating blood, and resolving stasis is outstanding. At the same time, Callicarpa can be used as an ornamental plant because of its gorgeous flowers and fruits. Callicarpa has good market development prospects, but the long seed reproduction cycle directly limits the large demand for seedlings in its industrial development. Asexual reproduction technology is the basis for the industrialization development of Callicarpa, which is helpful in producing high-quality seedlings and medicinal materials. Although Chinese and foreign scholars have achieved remarkable results in the study of asexual reproduction of Callicarpa, there is no report on the large-scale production of seedlings of Callicarpa. Integrating and improving its asexual reproduction technology can promote the development and utilization of Callicarpa, improve its medicinal value, and create significant economic benefits. Therefore, the authors reviewed the effects of cutting, season, plant growth regulators, substrates, environment, and management measures on the cutting of Callicarpa and the research progress of tissue culture propagation affected by explants, basic media, exogenous additives, subculture cycles, culture conditions, and transplanting substrates. The mechanism of adventitious root formation was reviewed at the cellular, physiological, and biochemical levels, so as to put forward the problems and corresponding solutions in the study of asexual propagation technology and regulatory mechanism of Callicarpa and point out the future research directions. The study aims to provide a reference for in-depth research on the asexual propagation technology of Callicarpa and the commercial production of its high-quality seedlings.
Reproduction, Asexual
;
Plants, Medicinal/physiology*
;
Seedlings/growth & development*
;
Tissue Culture Techniques
2.Finite element analysis of impact of bone mass and volume in low-density zone beneath tibial plateau on cartilage and meniscus in knee joint.
Longfei HAN ; Wenyuan HOU ; Shun LU ; Zijun ZENG ; Kun LIN ; Mingli HAN ; Guifeng LUO ; Long TIAN ; Fan YANG ; Mincong HE ; Qiushi WEI
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(3):296-306
OBJECTIVE:
To investigate the impact of bone mass and volume of low-density zones beneath the tibial plateau on the maximum von Mises stresses experienced by the cartilage and meniscus in the knee joint.
METHODS:
The study included one healthy adult volunteer, from whom CT scans were obtained, and one patient diagnosed with knee osteoarthrisis (KOA), for whom X-ray films were acquired. A static model of the knee joint featuring a low-density zone was established based on a normal knee model. In the finite element analysis, axial loads of 1 000 N and 1 800 N were applied to the weight-bearing region of the upper surface of the femoral head for model validation and subsequent finite element studies, respectively. The maximum von Mises stresses in the femoral cartilage, as well as the medial and lateral tibial cartilage and menisci, were observed, and the stress percentage of the medial and lateral components were concurrently analyzed. Additionally, HE staining, as well as alkaline magenta staining, were performed on the pathological specimens of patients with KOA in various low-density regions.
RESULTS:
The results of model validation indicated that the model was consistent with normal anatomical structures and correlated with previous calculations documented in the literature. Static analysis revealed that the maximum von Mises stress in the medial component of the normal knee was the lowest and increased with the advancement of the hypointensity zone. In contrast, the lateral component exhibited an opposing trend, with the maximum von Mises stress in the lateral component being the highest and decreasing as the hypointensity zone progressed. Additionally, the medial component experienced an increasing proportion of stress within the overall knee joint. HE staining demonstrated that the chondrocyte layer progressively deteriorated and may even disappear as the hypointensity zone expanded. Furthermore, alkaline magenta staining indicated that the severity of microfractures in the trabecular bone increased concurrently with the expansion of the hypointensity zone.
CONCLUSION
The presence of subtalar plateau low-density zone may aggravate joint degeneration. In clinical practice, it is necessary to pay attention to the changes in the subtalar plateau low-density zone and actively take effective measures to strengthen the bone status of the subtalar plateau low-density zone and restore the complete biomechanical function of the knee joint, in order to slow down or reverse the progression of osteoarthritis.
Humans
;
Finite Element Analysis
;
Knee Joint/physiology*
;
Tibia/anatomy & histology*
;
Cartilage, Articular/physiology*
;
Menisci, Tibial/physiopathology*
;
Tomography, X-Ray Computed
;
Osteoarthritis, Knee/diagnostic imaging*
;
Weight-Bearing
;
Bone Density
;
Adult
;
Stress, Mechanical
;
Male
;
Middle Aged
;
Biomechanical Phenomena
;
Female
3.Knocking Out DNMT1 Enhances the Inhibitory Effect of NK Cells on Acute Myeloid Leukemia.
Kun WU ; Jia-Li HUANG ; Shen-Ju CHENG ; Yan-Hong LI ; Yun ZENG ; Ming-Xia SHI
Journal of Experimental Hematology 2025;33(3):653-659
OBJECTIVE:
To explore the effect and mechanism of DNA methyltransferase 1 (DNMT1) knockout on the inhibition of acute myeloid leukemia (AML) by natural killer (NK) cells.
METHODS:
The peripheral blood NK cells of AML patients and controls were collected, and the mRNA and protein level of DNMT1 were measured by PCR and Western blot, respectively. The DNMT1 knockout mice were constructed to obtain NKDNMT1-/- cells. The NK cells were stimulated with interleukin (IL)-12, IL-15, and IL-18 to construct memory NK cells, and then the interferon-γ (IFN-γ) levels were measured by ELISA. After co-culturing with memory NK cells and HL60 cells, the killing effect of NKDNMT1-/- cells on HL60 cells was detected by LDH assay. Then, the HL60 cell apoptosis and NK cell NKG2D level were measured by flow cytometry. The perforin and granzyme B protein levels of NK cells were measured by Western blot. The AML model mice were constructed by injecting HL60 cells into the tail vein, meanwhile, memory NK cells were also injected, and then the mouse weights, CD33 positive rates, and survival time were detected.
RESULTS:
The mRNA and protein levels of DNMT1 in NK cells of AML patients were significantly higher than those in the control group (both P < 0.01), while the IFN-γ level induced by interleukin was significantly lower than that in the control group (P < 0.05). Compared with NKDNMT1+/+ cells, the ability of NKDNMT1-/- cells to secrete IFN-γ after interleukin stimulation was significantly increased (P < 0.05). The killing and apoptosis-inducing effects of NKDNMT1-/- cells on HL60 cells were significantly stronger than those of NKDNMT1+/+ cells (both P < 0.05). The NKG2D level and expression of perforin and granzyme B of NKDNMT1-/- cells were significantly increased compared with NKDNMT1+/+ cells (all P < 0.05). Compared with AML mice injected with NKDNMT1+/+ cells, AML mice injected with NKDNMT1-/- cells showed significantly increased body weight, decreased CD33 positive rate, and prolonged survival time (all P < 0.05).
CONCLUSION
Knocking out DNMT1 can enhance the inhibitory effect of NK cells on AML, which may be related to enhancing NK cell memory function.
Killer Cells, Natural/metabolism*
;
Animals
;
Leukemia, Myeloid, Acute
;
Humans
;
DNA (Cytosine-5-)-Methyltransferase 1
;
Mice
;
Mice, Knockout
;
HL-60 Cells
;
Apoptosis
;
Interferon-gamma/metabolism*
;
Granzymes/metabolism*
;
Perforin/metabolism*
;
NK Cell Lectin-Like Receptor Subfamily K/metabolism*
4.Anti-SARS-CoV-2 prodrug ATV006 has broad-spectrum antiviral activity against human and animal coronaviruses.
Tiefeng XU ; Kun LI ; Siyao HUANG ; Konstantin I IVANOV ; Sidi YANG ; Yanxi JI ; Hanwei ZHANG ; Wenbin WU ; Ye HE ; Qiang ZENG ; Feng CONG ; Qifan ZHOU ; Yingjun LI ; Jian PAN ; Jincun ZHAO ; Chunmei LI ; Xumu ZHANG ; Liu CAO ; Deyin GUO
Acta Pharmaceutica Sinica B 2025;15(5):2498-2510
Coronavirus-related diseases pose a significant challenge to the global health system. Given the diversity of coronaviruses and the unpredictable nature of disease outbreaks, the traditional "one bug, one drug" paradigm struggles to address the growing number of emerging crises. Therefore, there is an urgent need for therapeutic agents with broad-spectrum anti-coronavirus activity. Here, we provide evidence that ATV006, an anti-SARS-CoV-2 nucleoside analog targeting RNA-dependent RNA polymerase (RdRp), has broad antiviral activity against human and animal coronaviruses. Using mouse hepatitis virus (MHV) and human coronavirus NL63 (HCoV-NL63) as a model, we show that ATV006 has potent prophylactic and therapeutic activity against murine coronavirus infection in vivo. Remarkably, ATV006 successfully inhibits viral replication in mice even when administered 96 h after infection. Due to its oral bioavailability and potency against multiple coronaviruses, ATV006 has the potential to become a useful antiviral agent against SARS-CoV-2 and other circulating and emerging coronaviruses in humans and animals.
5.Targeting copper homeostasis: Akkermansia-derived OMVs co-deliver Atox1 siRNA and elesclomol for cancer therapy.
Muhammad HAMZA ; Shuai WANG ; Hao WU ; Jiayi SUN ; Yang DU ; Chuting ZENG ; Yike LIU ; Kun LI ; Xili ZHU ; Huiying LIU ; Lin CHEN ; Motao ZHU
Acta Pharmaceutica Sinica B 2025;15(5):2640-2654
Cuproptosis, a recently identified form of regulated cell death triggered by excess intracellular copper, has emerged as a promising cytotoxic strategy for cancer therapy. However, the therapeutic efficacy of copper ionophores such as elesclomol (ES) is often hindered by cellular copper homeostasis mechanisms that limit copper influx and cuproptosis induction. To address this challenge, we developed a nanoagent utilizing outer membrane vesicle (OMV) derived from Akkermansia muciniphila (Akk) for co-delivery of antioxidant 1 copper chaperone (Atox1)-targeting siRNA and ES (siAtox1/ES@OMV) to tumors. In vitro, we demonstrated that Atox1 knockdown via siRNA significantly disrupted copper export mechanisms, resulting in elevated intracellular copper levels. Simultaneously, ES facilitated efficient copper influx and mitochondrial transport, leading to Fe-S cluster depletion, increased proteotoxic stress, and robust cuproptosis. In vivo, siAtox1/ES@OMV achieved targeted tumor delivery and induced pronounced cuproptosis. Furthermore, leveraging the immunomodulatory properties of OMVs, siAtox1/ES@OMV promoted T-cell infiltration and the activation of tumor-reactive cytotoxic T cells, enhancing tumor immune responses. The combination of siAtox1/ES-induced cuproptosis and immunogenic cell death synergistically suppressed tumor growth in both subcutaneous breast cancer and orthotopic rectal cancer mouse models. This study highlights the potential of integrating copper homeostasis disruption with a copper ionophore using an immunomodulatory OMV-based vector, offering a promising combinatorial strategy for cancer therapy.
6.A thermo-sensitive hydrogel targeting macrophage reprogramming for sustained osteoarthritis pain relief.
Yue LIU ; Kai ZHOU ; Xinlong HE ; Kun SHI ; Danrong HU ; Chenli YANG ; Jinrong PENG ; Yuqi HE ; Guoyan ZHAO ; Yi KANG ; Yujun ZHANG ; Yue'e DAI ; Min ZENG ; Feier XIAN ; Wensheng ZHANG ; Zhiyong QIAN
Acta Pharmaceutica Sinica B 2025;15(11):6034-6051
Osteoarthritis (OA) causes chronic pain that significantly impairs quality of life, with current treatments often proving insufficient and accompanied by adverse effects. Recent research has identified the dorsal root ganglion (DRG) and its resident macrophages as crucial mediators of chronic OA pain through neuroinflammation driven by macrophage polarization. We present a novel injectable thermo-sensitive hydrogel system, KAF@PLEL, designed to deliver an anti-inflammatory peptide (KAF) specifically to the DRG. This biodegradable hydrogel enables sustained KAF release, promoting the reprogramming of DRG macrophages from pro-inflammatory to anti-inflammatory phenotypes. Through comprehensive in vitro and in vivo studies, we evaluated the hydrogel's biocompatibility, effects on macrophage polarization, and therapeutic efficacy in chronic OA pain management. The system demonstrated significant capabilities in preserving macrophage mitochondrial function, suppressing neuroinflammation, alleviating chronic OA pain, reducing cartilage degradation, and improving motor function in OA rat models. The sustained-release properties of KAF@PLEL enabled prolonged therapeutic effects while minimizing systemic exposure and side effects. These findings suggest that KAF@PLEL represents a promising therapeutic approach for improving outcomes in OA patients through targeted, sustained treatment.
7.The Bed Nucleus of the Stria Terminalis-Paraventricular Nucleus of the Hypothalamus Neural Circuit Regulates Neuropathic Pain Through the Brain-Spleen Axis.
Shoumeng HAN ; Xin CHEN ; Li MA ; Xin ZENG ; Ying WANG ; Tingting XIE ; Fancan WU ; Kun SONG ; Kenji HASHIMOTO ; Hanbing WANG ; Long WANG
Neuroscience Bulletin 2025;41(12):2148-2166
Neuropathic pain is a chronic condition caused by damage or dysfunction in the nervous system. While the spleen may influence neuropathic pain, its role has been poorly understood. This study demonstrates that the spleen plays a crucial role in regulating neuropathic pain through the bed nucleus of the stria terminalis (BNST) - paraventricular nucleus of the hypothalamus (PVN) neural circuit in a chronic constriction injury (CCI) mouse model. Splenectomy, splenic denervation, or splenic sympathectomy significantly increased the mechanical withdrawal threshold (MWT) and reduced macrophage infiltration in the dorsal root ganglia (DRG) of CCI mice. Pseudorabies virus injections into the spleen revealed connections to the BNST and PVN in the brain. Chemogenetic inhibition of the BNST-PVN circuit increased macrophage infiltration in the DRG and decreased the MWT; these effects were reversed by splenectomy, splenic denervation, or sympathectomy. These findings underscore the critical role of the spleen, regulated by the BNST-PVN circuit, in neuropathic pain.
Animals
;
Neuralgia/pathology*
;
Septal Nuclei/physiopathology*
;
Male
;
Spleen/physiopathology*
;
Paraventricular Hypothalamic Nucleus/physiopathology*
;
Mice, Inbred C57BL
;
Splenectomy
;
Mice
;
Neural Pathways/physiopathology*
;
Disease Models, Animal
;
Ganglia, Spinal/physiopathology*
;
Sympathectomy
;
Macrophages
8.Transcriptomic Analysis of Wuzi Yanzongwan on Testicular Spermatogenic Function in Semi-castrated Male Mice
Dixin ZOU ; Yueyang ZHANG ; Xuedan MENG ; Wei LU ; Shuang LYU ; Fanjun ZENG ; Kun CHEN ; Chang LIU ; Zhongxiu ZHANG ; Yu DUAN ; Yihang DAI ; Zhaoyi WANG ; Zhimin WANG ; Ruichao LIN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(1):61-69
ObjectiveTo screen out the transcriptomes related to the intervention of Wuzi Yanzongwan on the spermatogenic function of semi-castrated male mice, and to explore its potential mechanism in the intervention of the progress of low spermatogenic function. MethodBalb/c mice were randomly divided into sham-operated group, model group, testosterone propionate group(0.2 mg·kg-1·d-1, intramuscular injection) and Wuzi Yanzongwan group(1.56 g·kg-1·d-1, intragastric administration) according to body weight, with 12 mice in each group. The right testicle and epididymis were extracted from the model group and the drug administration group to construct the semi-castrated model of low spermatogenic function, while the fur and the right scrotum of the sham-operated group were only cut and immediately sterilized and sutured. At the end of the intervention, hematoxylin-eosin(HE) staining was used to observe the histopathology of testis, enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of serum testosterone(T), luteinizing hormone(LH) and follicle stimulating hormone(FSH). The sperm count and motility of epididymis were measured by automatic sperm detector of small animal. Transcriptomic microarray technology was used to detect the mRNA expression level of testicular tissue in each group, the transcriptome of genes related to the regulation of Wuzi Yanzongwan was screened, and three mRNAs were selected for Real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) to verify the transcriptome data. Through the annotation analysis of Gene Ontology(GO) and the signaling pathway analysis of Kyoto Encyclopedia of Genes and Genomes(KEGG), the related functions of drugs regulating transcriptome were analyzed. ResultCompared with the sham-operated group, the testicular tissue of mice in the model group showed spermatogenic injury, contraction and vacuolization of the seminiferous tubules, reduction of spermatogenic cells at all levels, widening of the interstitial space, obstruction of spermatogonial cell development and other morphological abnormalities, and serum T significantly decreased, LH significantly increased(P<0.01), and FSH elevated but no statistically significant difference, the count and vitality of epididymal sperm significantly decreased(P<0.01). There were 882 differentially expressed mRNAs in the testicular tissues, of which 565 were up-regulated and 317 were down-regulated. Cluster analysis showed that these differentially expressed mRNA could effectively distinguish between the sham-operated group and the model group. Compared with the model group, the damage to testicular tissue in the Wuzi Yanzongwan group was reduced, the structure of the seminiferous tubules was intact, vacuolization was reduced, and the number of spermatogenic cells at all levels was significantly increased and arranged tightly. The serum T significantly increased, LH significantly decreased(P<0.01), and FSH decreased but the difference was not statistically significant. The count and vitality of sperm in the epididymis were significantly increased(P<0.01). Moreover, Wuzi Yanzongwan could regulate 159 mRNA levels in the testes of semi-castrated mice, of which 32 were up-regulated and 127 were down-regulated, and the data of the transcriptome assay was verified to be reliable by Real-time PCR. GO and KEGG analysis showed that the transcriptome functions regulated by Wuzi Yanzongwan were involved in the whole cell cycle process of sperm development such as sex hormone production of interstitial cells in testis, renewal, differentiation, metabolism, apoptosis and signal transduction of spermatogenic cells, and were closely related to the biological behaviors of signaling pathways such as spermatogenic stem cell function, endoplasmic reticulum protein processing and metabolic program. ConclusionWuzi Yanzongwan can effectively improve the low spermatogenic function of semi-castrated male mice, and its mechanism may be related to the regulation of testicular transcriptional regulatory network, the synthesis of sex hormones in testicular interstitial cells, the function of spermatogenic stem cells, the whole cell cycle process of spermatogenesis, as well as the expression of endoplasmic reticulum protein processing and metabolic program related genes transcription.
9.Identification of genetic characteristics of B19 virus in a human parvovirus outbreak
Ting ZHANG ; Qili ZENG ; Kun CAI
Journal of Public Health and Preventive Medicine 2024;35(4):45-48
Objective To analyze the genetic characteristics of B19 parvovirus in a human parvovirus outbreak in Hubei Province in 2019, and to provide scientific basis for the prevention and control of parvovirus outbreaks. Methods Among of the 17 serum specimens and 20 throat swab specimens from a parvovirus B19 outbreak were collected in Hubei Province in 2019. The nucleic acid-positive specimens were identified by fluorescence quantitative RT-PCR. The specific sequences of NS1-VP1u (1157 bp) of B19 positive specimens were amplified by nested PCR to determine B19 genotype. Results The genotype of B19 virus in 17 patients were subgenotype 1a, and the nucleotide homology of subgenotype 1a was 99.90% - 100%. The B19 subgenotype 1a was located in the same small branch as the Chinese Beijing strain KR819772, the Chinese Beijing strain KR819773 and the Chinese Hangzhou strain KT310174, and the distance was the closest. Conclusion The B19 virus in a human parvovirus outbreak in Hubei Province in 2019 belongs to subgenotype 1a.
10.Effects of Codonopsis pilosula polysaccharide on gastric mucosal injury in rats with chronic atrophic gastritis
Ran ZHANG ; Kun YANG ; Zhenjun ZENG ; Sujuan LI ; Jie LIU
China Pharmacy 2024;35(16):1985-1990
OBJECTIVE To investigate the effects of Codonopsis pilosula polysaccharide (CPP) regulating the nuclear factor- erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway on gastric mucosal injury in rats with chronic atrophic gastritis (CAG). METHODS Rats were randomly divided into control group, model group, CPP low-dose, medium-dose and high-dose groups (CPP 10, 20, 40 mg/kg), and ML385 group (Nrf2 inhibitor ML385 30 mg/kg+CPP 40 mg/kg), 10 rats per group. CAG rat model was established using N-methyl-N′- nitro-N-nitrosoguanidine combined with irregular diet, then they were given drugs for consecutive 6 weeks. HE staining was used to observe the pathological changes in gastric tissue morphology; the levels of serum gastrin (GAS), motilin (MTL), pepsin (PP), as well as tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8) malondialdehyde (MDA) and superoxide dismutase (SOD) in gastric mucosal tissue were detected; TUNEL assay was used to observe gastric mucosal tissue cell apoptosis; immunohistochemical assay was adopted to observe the expressions of Nrf2 and recombinant Bcl2 associated X protein (Bax) in gastric mucosal tissue; Western blot was used to detect the expressions of Nrf2, HO-1, Bax and Bcl-2 proteins in gastric mucosal tissue. RESULTS Compared with the control group, the gastric mucosal tissue was damaged; the levels of GAS, MTL, PP and SOD, and the protein expressions of Nrf2, HO-1 and Bcl-2 were significantly reduced in model group (P<0.05), while the levels of MDA, TNF-α and IL-8, the cell apoptosis index, and the protein expression of Bax were significantly increased (P<0.05). Compared with model group, CPP low-dose, medium-dose and high- dose groups showed varying degrees of improvement in gastric mucosal histopathology; the levels of the quantitative indicators were significantly reversed (P<0.05). Nrf2 inhibitor ML385 significantly attenuated the improvement effect of high-dose CPP on the above indicators in CAG rats (P<0.05). CONCLUSIONS CPP can improve gastric mucosal injury in CAG rats, and inhibit oxidative stress, inflammatory response, and cell apoptosis. The mechanism of action may be related to the activation of Nrf2/HO-1 signaling pathway.


Result Analysis
Print
Save
E-mail