1.Effect of Folic Acid-modified Crebanine Polyethylene Glycol-polylactic Acid Hydroxyacetic Acid Copolymer Nanoparticles Combined with Ultrasonic Irradiation on Subcutaneous Tumor Growth of Liver Cancer in Mice
Rui PAN ; Junze TANG ; Hailiang ZHANG ; Kun YU ; Xiaoyu ZHAO ; Xin CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):217-225
ObjectiveTo investigate the effect of folic acid-modified crebanine polyethylene glycol-polylactic acid hydroxyacetic acid copolymer(PEG-PLGA) nanoparticles(FA-Cre@PEG-PLGA NPs, hereinafter referred to as NPs) combined with ultrasonic irradiation on subcutaneous tumor of liver cancer in Kunming(KM) mice. MethodsEighty-four healthy male KM mice were utilized to establish a subcutaneous tumor model of mouse hepatocellular carcinoma with H22 cells, then mice were randomly divided into model group, placebo group, hydroxycamptothecin group(8 mg∙kg-1), low, medium and high dose crebanine raw material groups(2, 2.5, 3 mg∙kg-1, hereinafter referred to as the low, medium and high dose crebanine groups, respectively), low, medium and high dose NPs groups(2, 2.5, 3 mg∙kg-1), and low, medium and high dose NPs combined with ultrasonic irradiation groups(2, 2.5, 3 mg∙kg-1, hereinafter referred to as the low, medium and high dose combination groups, respectively). The corresponding doses of drugs were administered via tail vein injection, the model group received no treatment, while the placebo group was injected with an equivalent amount of normal saline. Dosing was conducted for a total of 10 times on alternate days. The body mass of the mice was monitored, and parameters such as body mass change rate, thymus index, spleen index, tumor volume, tumor weight, relative tumor growth rate(T/C), and tumor inhibition rate(TGI) were calculated. Pathological changes in liver and kidney tissues as well as the tumor were observed by hematoxylin-eosin(HE) staining. Additionally, the levels of aspartate aminotransferase(AST), alanine aminotransferase(ALT), blood urea nitrogen(BUN) and creatinine(CREA) in serum of mice were detected by biochemical method. Furthermore, the effect of ultrasound on the distribution of NPs in subcutaneous tumors of mouse hepatocellular carcinoma was observed by in vivo imaging technique. ResultsAmong different treatment methods, the combination of NPs and ultrasound irradiation had the best therapeutic effect. Compared with the model group, the body mass growth rates of mice in the medium and high combination groups decreased, while the thymus index and spleen index increased, but there was no statistically significant difference in serum AST, ALT, BUN and CREA levels, indicating that NPs combined with ultrasound irradiation had little effect on the normal physiological state of the body, oth groups had TGI>40% and T/C<60%, indicating a clear anti-tumor effect. Pathological analysis showed that compared with the NPs groups, the combination groups exhibited varying degrees of necrosis in tumor cells, accompanied by less damage to the liver and kidneys. In vivo imaging of small animals showed that compared with the high dose NPs group, the high dose combination group had stronger tumor targeting ability(P<0.01). ConclusionNPs combined with ultrasonic irradiation can not only effectively targeted the drug to the tumor site, inhibit the subcutaneous tumor growth of mouse liver cancer, but also decrease damage to liver and kidney tissues.
2.Clinical practice guidelines for intraoperative cell salvage in patients with malignant tumors
Changtai ZHU ; Ling LI ; Zhiqiang LI ; Xinjian WAN ; Shiyao CHEN ; Jian PAN ; Yi ZHANG ; Xiang REN ; Kun HAN ; Feng ZOU ; Aiqing WEN ; Ruiming RONG ; Rong XIA ; Baohua QIAN ; Xin MA
Chinese Journal of Blood Transfusion 2025;38(2):149-167
Intraoperative cell salvage (IOCS) has been widely applied as an important blood conservation measure in surgical operations. However, there is currently a lack of clinical practice guidelines for the implementation of IOCS in patients with malignant tumors. This report aims to provide clinicians with recommendations on the use of IOCS in patients with malignant tumors based on the review and assessment of the existed evidence. Data were derived from databases such as PubMed, Embase, the Cochrane Library and Wanfang. The guideline development team formulated recommendations based on the quality of evidence, balance of benefits and harms, patient preferences, and health economic assessments. This study constructed seven major clinical questions. The main conclusions of this guideline are as follows: 1) Compared with no perioperative allogeneic blood transfusion (NPABT), perioperative allogeneic blood transfusion (PABT) leads to a more unfavorable prognosis in cancer patients (Recommended); 2) Compared with the transfusion of allogeneic blood or no transfusion, IOCS does not lead to a more unfavorable prognosis in cancer patients (Recommended); 3) The implementation of IOCS in cancer patients is economically feasible (Recommended); 4) Leukocyte depletion filters (LDF) should be used when implementing IOCS in cancer patients (Strongly Recommended); 5) Irradiation treatment of autologous blood to be reinfused can be used when implementing IOCS in cancer patients (Recommended); 6) A careful assessment of the condition of cancer patients (meeting indications and excluding contraindications) should be conducted before implementing IOCS (Strongly Recommended); 7) Informed consent from cancer patients should be obtained when implementing IOCS, with a thorough pre-assessment of the patient's condition and the likelihood of blood loss, adherence to standardized internally audited management procedures, meeting corresponding conditions, and obtaining corresponding qualifications (Recommended). In brief, current evidence indicates that IOCS can be implemented for some malignant tumor patients who need allogeneic blood transfusion after physician full evaluation, and LDF or irradiation should be used during the implementation process.
3.Targeting effect and anti-tumor mechanism of folic acid-modified crebanine nanoparticles combined with ultra-sound irradiation on M109 cells in vitro and in vivo
Hailiang ZHANG ; Xiaoyu ZHAO ; Jiahua MEI ; Rui PAN ; Junze TANG ; Kun YU ; Rui XUE ; Xiaofei LI ; Xin CHENG
China Pharmacy 2025;36(14):1730-1736
OBJECTIVE To investigate the targeting effect of folic acid-modified crebanine nanoparticles (FA-Cre@PEG- PLGA NPs, hereinafter referred to as “NPs”) combined with ultrasound irradiation on M109 cells in vitro and in vivo after administration, and explore the anti-tumor mechanism. METHODS CCK-8 assay was used to detect the inhibitory effect of NPs combined with ultrasound irradiation on the proliferation of M109 cells, and the best ultrasound time was selected. Using human lung cancer A549 cells as a control, the targeting of NPs combined with ultrasound irradiation to M109 cells was evaluated by free folic acid blocking assay and cell uptake assay. The effects of NPs combined with ultrasound irradiation on the migration, invasion, apoptosis, cell cycle and reactive oxygen species (ROS) levels of M109 cells were detected by cell scratch test, Transwell chamber test and flow cytometry at 1 h after 958401536@qq.com administration; the changes of mitochondrial membrane potential (MMP) were observed by fluorescence inverted microscope. A mouse subcutaneous tumor model of M109 cells was constructed, and the in vivo tumor targeting of NPs combined with ultrasound irradiation was investigated by small animal in vivo imaging technology. RESULTS NPs combined with ultrasound irradiation could significantly inhibit the proliferation of M109 cells, and the optimal ultrasound time was 1 h after administration. The free folic acid could antagonize the inhibitory effect of NPs on the proliferation of M109 cells, and combined with ultrasound irradiation could partially reverse this antagonism. Compared with A549 cells, the uptake rate of NPs in M109 cells was significantly higher (P<0.01), and ultrasound irradiation could promote cellular uptake. NPs combined with ultrasound irradiation could inhibit the migration and invasion of M109 cells and block the cell cycle in the G0/G1 and G2/M phases. Compared with control group, the apoptosis rate of M109 cells and ROS level were increased significantly (P<0.01), while the MMP decreased significantly (P<0.01) in the different concentration (100, 200, 300 μg/mL) groups of M109 cells. Compared with the mice in non-ultrasound group, the fluorescence intensity and tumor-targeting index of the tumor site in the 0 h ultrasound group were significantly enhanced (P<0.05 or P<0.01). CONCLUSIONS NPs combined with ultrasound irradiation have a strong targeting effect on M109 cells in vitro and in vivo, the anti-tumor mechanism includes inhibiting cell migration and invasion, blocking cell cycle, and inducing apoptosis.
4.Advances in diffuse optical technology lenses for myopia control
Kun HE ; Bingxin PAN ; Suyun YANG ; Zhiyang HE ; Mengting ZHENG ; Meiling SHU ; Pengfei JIANG ; Shan XU ; Pengfei TIAN
International Eye Science 2025;25(9):1476-1483
Recent years have witnessed significant advancements in myopia control research through the application of diffuse optical technology(DOT)spectacle lenses. Myopia has emerged as a global public health challenge, affecting nearly half of the world's population, with childhood and adolescent myopia rates continuing to rise. DOT lenses represent an innovative myopia control intervention based on retinal contrast signal theory. These lenses incorporate micro-light scattering dots distributed across the lens surface to reduce retinal imaging contrast and modulate the influence of visual input on axial elongation, thereby slowing myopia progression. The core mechanism operates through refractive index differences between the lens substrate(1.53)and scattering dots(1.50), which generate optical scattering effects. This design maintains clear vision through a central 5 mm optical zone while effectively reducing contrast signal intensity in the peripheral retina. Large-scale randomized controlled trials, including the CYPRESS study, have demonstrated significant myopia control efficacy in children aged 6-10 years: 12-month follow-up data revealed a 74% reduction in myopia progression and a 50% reduction in axial elongation, with sustained safety and visual quality maintained over 4-year long-term follow-up. However, several aspects of DOT technology remain contentious and require further clinical validation, including its applicability across different age groups, optimal scattering dot density configurations, combined application effects with other myopia control methods, and long-term visual adaptation during extended use. This review systematically examines the theoretical foundations, design characteristics, clinical application progress, and future development directions of DOT technology, providing scientific evidence for clinical myopia prevention and control strategy formulation.
5.Cross-session motor imagery-electroencephalography decoding with Riemannian spatial filtering and domain adaptation.
Lincong PAN ; Xinwei SUN ; Kun WANG ; Yupei CAO ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2025;42(2):272-279
Motor imagery (MI) is a mental process that can be recognized by electroencephalography (EEG) without actual movement. It has significant research value and application potential in the field of brain-computer interface (BCI) technology. To address the challenges posed by the non-stationary nature and low signal-to-noise ratio of MI-EEG signals, this study proposed a Riemannian spatial filtering and domain adaptation (RSFDA) method for improving the accuracy and efficiency of cross-session MI-BCI classification tasks. The approach addressed the issue of inconsistent data distribution between source and target domains through a multi-module collaborative framework, which enhanced the generalization capability of cross-session MI-EEG classification models. Comparative experiments were conducted on three public datasets to evaluate RSFDA against eight existing methods in terms of classification accuracy and computational efficiency. The experimental results demonstrated that RSFDA achieved an average classification accuracy of 79.37%, outperforming the state-of-the-art deep learning method Tensor-CSPNet (76.46%) by 2.91% ( P < 0.01). Furthermore, the proposed method showed significantly lower computational costs, requiring only approximately 3 minutes of average training time compared to Tensor-CSPNet's 25 minutes, representing a reduction of 22 minutes. These findings indicate that the RSFDA method demonstrates superior performance in cross-session MI-EEG classification tasks by effectively balancing accuracy and efficiency. However, its applicability in complex transfer learning scenarios remains to be further investigated.
Electroencephalography/methods*
;
Brain-Computer Interfaces
;
Humans
;
Imagination/physiology*
;
Signal Processing, Computer-Assisted
;
Movement/physiology*
;
Signal-To-Noise Ratio
;
Deep Learning
;
Algorithms
6.HAPLN1 secreted by synovial fibroblasts in rheumatoid arthritis promotes macrophage polarization towards the M1 phenotype.
Chenggen LUO ; Kun HUANG ; Xiaoli PAN ; Yong CHEN ; Yanjuan CHEN ; Yunting CHEN ; Mang HE ; Mei TIAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):413-419
Objective To investigate the effects of hyaluronic acid and proteoglycan-linked protein 1 (HAPLN1) secreted by synovial fibroblasts (FLS) on the polarization of macrophages (Mϕ) in rheumatoid arthritis (RA). Methods Human monocytic leukemia cells (THP-1) were differentiated into Mϕ, which were subsequently exposed to recombinant HAPLN1 (rHAPLN1). RA-FLS were transfected separately with HAPLN1 overexpression plasmid (HAPLN1OE) or small interfering RNA targeting HAPLN1 (si-HAPLN1), and then co-cultured with Mϕ to establish a co-culture model. The viability of Mϕ was assessed using the CCK-8 assay, and the proportions of pro-inflammatory M1-type and anti-inflammatory M2-type Mϕ were analyzed by flow cytometry. Additionally, the expression levels of inflammatory markers, including interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), and inducible nitric oxide synthase (iNOS), were quantified using quantitative real-time PCR and Western blot analysis. Results The viability of Mϕ was increased in the rHAPLN1 group compared to the control group. Furthermore, both the M1/Mϕ ratio and inflammatory factor levels were elevated in the rHAPLN1 and HAPLN1OE groups. In contrast, the si-HAPLN1 group exhibited a decrease in the M1/Mϕ ratio and inflammatory factor expression. Notably, the introduction of rHAPLN1 in rescue experiments further promoted Mϕ polarization towards the M1 phenotype. Conclusion HAPLN1, secreted by RA fibroblast-like synoviocytes (RA-FLS), enhances Mϕ polarization towards the M1 phenotype.
Humans
;
Arthritis, Rheumatoid/genetics*
;
Macrophages/immunology*
;
Fibroblasts/metabolism*
;
Phenotype
;
Extracellular Matrix Proteins/genetics*
;
Proteoglycans/genetics*
;
Synovial Membrane/cytology*
;
Tumor Necrosis Factor-alpha/genetics*
;
Interleukin-1beta/genetics*
;
Nitric Oxide Synthase Type II/genetics*
;
Cell Differentiation
;
Coculture Techniques
;
THP-1 Cells
7.Anti-SARS-CoV-2 prodrug ATV006 has broad-spectrum antiviral activity against human and animal coronaviruses.
Tiefeng XU ; Kun LI ; Siyao HUANG ; Konstantin I IVANOV ; Sidi YANG ; Yanxi JI ; Hanwei ZHANG ; Wenbin WU ; Ye HE ; Qiang ZENG ; Feng CONG ; Qifan ZHOU ; Yingjun LI ; Jian PAN ; Jincun ZHAO ; Chunmei LI ; Xumu ZHANG ; Liu CAO ; Deyin GUO
Acta Pharmaceutica Sinica B 2025;15(5):2498-2510
Coronavirus-related diseases pose a significant challenge to the global health system. Given the diversity of coronaviruses and the unpredictable nature of disease outbreaks, the traditional "one bug, one drug" paradigm struggles to address the growing number of emerging crises. Therefore, there is an urgent need for therapeutic agents with broad-spectrum anti-coronavirus activity. Here, we provide evidence that ATV006, an anti-SARS-CoV-2 nucleoside analog targeting RNA-dependent RNA polymerase (RdRp), has broad antiviral activity against human and animal coronaviruses. Using mouse hepatitis virus (MHV) and human coronavirus NL63 (HCoV-NL63) as a model, we show that ATV006 has potent prophylactic and therapeutic activity against murine coronavirus infection in vivo. Remarkably, ATV006 successfully inhibits viral replication in mice even when administered 96 h after infection. Due to its oral bioavailability and potency against multiple coronaviruses, ATV006 has the potential to become a useful antiviral agent against SARS-CoV-2 and other circulating and emerging coronaviruses in humans and animals.
8.A Comparative Analysis of Subtyping Methodologies on Cross-sectional sMRI Data.
Shirui ZHANG ; Baitong ZHANG ; Kun ZHAO ; Zhuangzhuang LI ; Pan WANG ; Dawei WANG ; Chengyuan SONG ; Jie LU ; Zengqiang ZHANG ; Hongxiang YAO ; Tong HAN ; Chunshui YU ; Bo ZHOU ; Ying HAN ; Xi ZHANG ; Pindong CHEN ; Yong LIU
Neuroscience Bulletin 2025;41(9):1689-1695
9.Influence of Outdoor Light at Night on Early Reproductive Outcomes of In Vitro Fertilization and Its Threshold Effect: Evidence from a Couple-Based Preconception Cohort Study.
Wen Bin FANG ; Ying TANG ; Ya Ning SUN ; Yan Lan TANG ; Yin Yin CHEN ; Ya Wen CAO ; Ji Qi FANG ; Kun Jing HE ; Yu Shan LI ; Ya Ning DAI ; Shuang Shuang BAO ; Peng ZHU ; Shan Shan SHAO ; Fang Biao TAO ; Gui Xia PAN
Biomedical and Environmental Sciences 2025;38(8):1009-1015
10.Nucleophosmin acetylation and construction and expression of its modified sites mutants in breast cancer
Jing-Wei HAO ; Ting PAN ; Yue LI ; Wen-Bin ZHU ; Wen-Bo DUAN ; Li-Kun LIU ; Li-Ling YUE ; Yun-Long LIU ; Xiu-Li GAO
Acta Anatomica Sinica 2024;55(2):196-202
Objective To determine the acetylation level of nucleophosmin(NPM)in female breast cancer and to discuss its function through mutation of modified lysine sites.To construct positive and negative NPM mutants on its acetylated lysine sites and to express them in breast cancer cells.Methods Acetylation level and acetylated lysine sites of NPM in three breast cancer tissues and para-carcinoma tissues were detected by acetylome technology;NPM mutants were constructed by site-directed mutagenesis PCR,specific PCR products were digested by DpnI and transformed into Escherichia coli(E.coli)to obtain specific plasmids for mutants;The accuracy of mutants were verified by double restriction enzyme digestion and sequencing;The mutants were expressed in BT-549 cells by transient transfection and verified by RT-PCR method.Protein expression and acetylation level of NPM were validated by Western blotting;Function of NPM acetylation was analyzed by proteomic detection and bioinformatic analysis.Results The 27th and 32nd lysine of NPM were highly acetylated in breast cancer tissues,which were 2.76 and 2.22 times higher than those in adjacent normal tissues,respectively;The NPM mutants showed the same molecular weight as that of wild type NPM and contained expected mutation sites;Corresponding NPM mRNA levels of BT-549 cells transfected with NPM mutants were significantly increased.With the increase of wild type NPM expression level,NPM acetylation level increased,while decreased after 27th lysine underwent negative mutation.NPM acetylation can significantly change the expression levels of 101 proteins in BT-549 cells,which are enriched in regulation of cellular macromolecule biosynthesis,DNA-template transcription,RNA biosynthesis and RNA metabolism process.Conclusion NPM is highly acetylated in breast cancer and can play a key role in cellular macromolecule biosynthesis,DNA-templated transcription,RNA biosynthesis and RNA metabolism process.

Result Analysis
Print
Save
E-mail