1.Evaluation of the performance of the artificial intelligence - enabled snail identification system for recognition of Oncomelania hupensis robertsoni and Tricula
Jihua ZHOU ; Shaowen BAI ; Liang SHI ; Jianfeng ZHANG ; Chunhong DU ; Jing SONG ; Zongya ZHANG ; Jiaqi YAN ; Andong WU ; Yi DONG ; Kun YANG
Chinese Journal of Schistosomiasis Control 2025;37(1):55-60
Objective To evaluate the performance of the artificial intelligence (AI)-enabled snail identification system for recognition of Oncomelania hupensis robertsoni and Tricula in schistosomiasis-endemic areas of Yunnan Province. Methods Fifty O. hupensis robertsoni and 50 Tricula samples were collected from Yongbei Township, Yongsheng County, Lijiang City, a schistosomiasis-endemic area in Yunnan Province in May 2024. A total of 100 snail sample images were captured with smartphones, including front-view images of 25 O. hupensis robertsoni and 25 Tricula samples (upward shell opening) and back-view images of 25 O. hupensis robertsoni and 25 Tricula samples (downward shell opening). Snail samples were identified as O. hupensis robertsoni or Tricula by schistosomiasis control experts with a deputy senior professional title and above according to image quality and morphological characteristics. A standard dataset for snail image classification was created, and served as a gold standard for recognition of snail samples. A total of 100 snail sample images were recognized with the AI-enabled intelligent snail identification system based on a WeChat mini program in smartphones. Schistosomiasis control professionals were randomly sampled from stations of schistosomisis prevention and control and centers for disease control and prevention in 18 schistosomiasis-endemic counties (districts, cities) of Yunnan Province, for artificial identification of 100 snail sample images. All professionals are assigned to two groups according the median years of snail survey experiences, and the effect of years of snail survey experiences on O. hupensis robertsoni sample image recognition was evaluated. A receiver operating characteristic (ROC) curve was plotted, and the sensitivity, specificity, accuracy, Youden’s index and the area under the curve (AUC) of the AI-enabled intelligent snail identification system and artificial identification were calculated for recognition of snail sample images. The snail sample image recognition results of AI-enabled intelligent snail identification system and artificial identification were compared with the gold standard, and the internal consistency of artificial identification results was evaluated with the Cronbach’s coefficient alpha. Results A total of 54 schistosomiasis control professionals were sampled for artificial identification of snail sample image recognition, with a response rate of 100% (54/54), and the accuracy, sensitivity, specificity, Youden’s index, and AUC of artificial identification were 90%, 86%, 94%, 0.80 and 0.90 for recognition of snail sample images, respectively. The overall Cronbach’s coefficient alpha of artificial identification was 0.768 for recognition of snail sample images, and the Cronbach’s coefficient alpha was 0.916 for recognition of O. hupensis robertsoni snail sample images and 0.925 for recognition of Tricula snail sample images. The overall accuracy of artificial identification was 90% for recognition of snail sample images, and there was no significant difference in the accuracy of artificial identification for recognition of O. hupensis robertsoni (86%) and Tricula snail sample images (94%) (χ2 = 1.778, P > 0.05). There was no significant difference in the accuracy of artificial identification for recognition of snail sample images with upward (88%) and downward shell openings (92%) (χ2 = 0.444, P > 0.05), and there was a significant difference in the accuracy of artificial identification for recognition of snail sample images between schistosomiasis control professionals with snail survey experiences of 6 years and less (75%) and more than 6 years (90%) (χ2 = 7.792, P < 0.05). The accuracy, sensitivity, specificity and AUC of the AI-enabled intelligent snail identification system were 88%, 100%, 76% and 0.88 for recognition of O. hupensis robertsoni snail sample images, and there was no significant difference in the accuracy of recognition of O. hupensis robertsoni snail sample images between the AI-enabled intelligent snail identification system and artificial identification (χ2 = 0.204, P > 0.05). In addition, there was no significant difference in the accuracy of artificial identification for recognition of snail sample images with upward (90%) and downward shell openings (86%) (χ2 = 0.379, P > 0.05), and there was a significant difference in the accuracy of artificial identification for recognition of snail sample images between schistosomiasis control professionals with snail survey experiences of 6 years and less and more than 6 years (χ2 = 5.604, Padjusted < 0.025). Conclusions The accuracy of recognition of snail sample images is comparable between the AI-enabled intelligent snail identification system and artificial identification by schistosomiasis control professionals, and the AI-enabled intelligent snail identification system is feasible for recognition of O. hupensis robertsoni and Tricula in Yunnan Province.
2.Effects of MTHFR and GGH gene polymorphisms on plasma concentrations and toxicity following high-dose methotrexate therapy in children with acute lymphoblastic leukemia.
Lin-Xiao TENG ; Qi AN ; Lei WANG ; Nan WANG ; Qing-Ling KONG ; Rui HAN ; Yuan WANG ; Lu LIU ; Yan WANG ; Shu-Mei XU ; Kun-Peng SHI ; Fang-Shan QIU ; Xi-Xi DU ; Jin-Rui SHI
Chinese Journal of Contemporary Pediatrics 2025;27(7):802-807
OBJECTIVES:
To investigate the effects of methylenetetrahydrofolate reductase (MTHFR) rs1801133 and γ-glutamyl hydrolase (GGH) rs11545078 gene polymorphisms on plasma concentrations and toxicity following high-dose methotrexate (MTX) therapy in children with acute lymphoblastic leukemia (ALL).
METHODS:
Children with ALL treated at the Xuzhou Children's Hospital of Xuzhou Medical University from January 2021 to April 2024 were selected for this study. Genotypes of MTHFR rs1801133 and GGH rs11545078 were determined using multiplex polymerase chain reaction. MTX plasma concentrations were measured by enzyme-multiplied immunoassay technique, and toxicity was graded according to the Common Terminology Criteria for Adverse Events version 5.0. The relationships between MTHFR rs1801133 and GGH rs11545078 genotypes and both MTX plasma concentrations and associated toxicities were analyzed.
RESULTS:
In the low-risk ALL group, the MTHFR rs1801133 genotype was associated with increased MTX plasma concentrations at 72 hours (P<0.05). In the intermediate- to high-risk group, the MTHFR rs1801133 genotype was associated with increased MTX plasma concentrations at 48 hours (P<0.05), and the GGH rs11545078 genotype was associated with increased MTX plasma concentrations at 48 hours (P<0.05). In the intermediate- to high-risk group, the MTHFR rs1801133 genotype was associated with the occurrence of reduced hemoglobin (P<0.05), and the GGH rs11545078 genotype was associated with the occurrence of thrombocytopenia (P<0.05).
CONCLUSIONS
Detection of MTHFR rs1801133 and GGH rs11545078 genotypes can be used to predict increased MTX plasma concentrations and the occurrence of toxic reactions in high-dose MTX treatment of ALL, enabling timely interventions to enhance safety.
Humans
;
Methotrexate/toxicity*
;
Methylenetetrahydrofolate Reductase (NADPH2)/genetics*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/blood*
;
Male
;
Female
;
Child
;
Child, Preschool
;
gamma-Glutamyl Hydrolase/genetics*
;
Antimetabolites, Antineoplastic/adverse effects*
;
Infant
;
Polymorphism, Genetic
;
Adolescent
;
Genotype
;
Polymorphism, Single Nucleotide
3.Real-world efficacy and safety of azvudine in hospitalized older patients with COVID-19 during the omicron wave in China: A retrospective cohort study.
Yuanchao ZHU ; Fei ZHAO ; Yubing ZHU ; Xingang LI ; Deshi DONG ; Bolin ZHU ; Jianchun LI ; Xin HU ; Zinan ZHAO ; Wenfeng XU ; Yang JV ; Dandan WANG ; Yingming ZHENG ; Yiwen DONG ; Lu LI ; Shilei YANG ; Zhiyuan TENG ; Ling LU ; Jingwei ZHU ; Linzhe DU ; Yunxin LIU ; Lechuan JIA ; Qiujv ZHANG ; Hui MA ; Ana ZHAO ; Hongliu JIANG ; Xin XU ; Jinli WANG ; Xuping QIAN ; Wei ZHANG ; Tingting ZHENG ; Chunxia YANG ; Xuguang CHEN ; Kun LIU ; Huanhuan JIANG ; Dongxiang QU ; Jia SONG ; Hua CHENG ; Wenfang SUN ; Hanqiu ZHAN ; Xiao LI ; Yafeng WANG ; Aixia WANG ; Li LIU ; Lihua YANG ; Nan ZHANG ; Shumin CHEN ; Jingjing MA ; Wei LIU ; Xiaoxiang DU ; Meiqin ZHENG ; Liyan WAN ; Guangqing DU ; Hangmei LIU ; Pengfei JIN
Acta Pharmaceutica Sinica B 2025;15(1):123-132
Debates persist regarding the efficacy and safety of azvudine, particularly its real-world outcomes. This study involved patients aged ≥60 years who were admitted to 25 hospitals in mainland China with confirmed SARS-CoV-2 infection between December 1, 2022, and February 28, 2023. Efficacy outcomes were all-cause mortality during hospitalization, the proportion of patients discharged with recovery, time to nucleic acid-negative conversion (T NANC), time to symptom improvement (T SI), and time of hospital stay (T HS). Safety was also assessed. Among the 5884 participants identified, 1999 received azvudine, and 1999 matched controls were included after exclusion and propensity score matching. Azvudine recipients exhibited lower all-cause mortality compared with controls in the overall population (13.3% vs. 17.1%, RR, 0.78; 95% CI, 0.67-0.90; P = 0.001) and in the severe subgroup (25.7% vs. 33.7%; RR, 0.76; 95% CI, 0.66-0.88; P < 0.001). A higher proportion of patients discharged with recovery, and a shorter T NANC were associated with azvudine recipients, especially in the severe subgroup. The incidence of adverse events in azvudine recipients was comparable to that in the control group (2.3% vs. 1.7%, P = 0.170). In conclusion, azvudine showed efficacy and safety in older patients hospitalized with COVID-19 during the SARS-CoV-2 omicron wave in China.
4.Targeting copper homeostasis: Akkermansia-derived OMVs co-deliver Atox1 siRNA and elesclomol for cancer therapy.
Muhammad HAMZA ; Shuai WANG ; Hao WU ; Jiayi SUN ; Yang DU ; Chuting ZENG ; Yike LIU ; Kun LI ; Xili ZHU ; Huiying LIU ; Lin CHEN ; Motao ZHU
Acta Pharmaceutica Sinica B 2025;15(5):2640-2654
Cuproptosis, a recently identified form of regulated cell death triggered by excess intracellular copper, has emerged as a promising cytotoxic strategy for cancer therapy. However, the therapeutic efficacy of copper ionophores such as elesclomol (ES) is often hindered by cellular copper homeostasis mechanisms that limit copper influx and cuproptosis induction. To address this challenge, we developed a nanoagent utilizing outer membrane vesicle (OMV) derived from Akkermansia muciniphila (Akk) for co-delivery of antioxidant 1 copper chaperone (Atox1)-targeting siRNA and ES (siAtox1/ES@OMV) to tumors. In vitro, we demonstrated that Atox1 knockdown via siRNA significantly disrupted copper export mechanisms, resulting in elevated intracellular copper levels. Simultaneously, ES facilitated efficient copper influx and mitochondrial transport, leading to Fe-S cluster depletion, increased proteotoxic stress, and robust cuproptosis. In vivo, siAtox1/ES@OMV achieved targeted tumor delivery and induced pronounced cuproptosis. Furthermore, leveraging the immunomodulatory properties of OMVs, siAtox1/ES@OMV promoted T-cell infiltration and the activation of tumor-reactive cytotoxic T cells, enhancing tumor immune responses. The combination of siAtox1/ES-induced cuproptosis and immunogenic cell death synergistically suppressed tumor growth in both subcutaneous breast cancer and orthotopic rectal cancer mouse models. This study highlights the potential of integrating copper homeostasis disruption with a copper ionophore using an immunomodulatory OMV-based vector, offering a promising combinatorial strategy for cancer therapy.
5.Lycium barbarum polysaccharides alleviates cisplatin-induced granulosa cell injury by downregulating miR-23a.
Liuqing LIU ; Kun WANG ; Xueqing WANG ; Bingxin DU
Journal of Southern Medical University 2025;45(11):2340-2349
OBJECTIVES:
To evaluate the protective effect of Lycium barbarum polysaccharides (LBP) against cisplatin-induced ovarian granulosa cell injury and investigate its possible mechanisms.
METHODS:
Human granulosa-like tumor cell line (KGN) were treated with 2.5 µg/mL cisplatin for 24 h, followed by treatment with 100, 500, and 1000 mg/L LBP, and the changes in cell viability, apoptosis, level of anti-Müllerian hormone (AMH), and cell ultrastructure were detected with CCK-8 assay, flow cytometry, ELISA and transmission electron microscopy. The cellular expressions of Bax, caspase-3, Bcl-2, and the PI3K/AKT pathway proteins were analyzed using Western blotting, and the expression of miR-23a was detected with RT-qPCR. KGN cell models with lentivirus-mediated miR-23a overexpression or knockdown were used to verify the therapeutic mechanism of LBP.
RESULTS:
Cisplatin treatment significantly inhibited cell viability, induced apoptosis, decreased AMH level, caused ultrastructural abnormalities, increased Bax and caspase-3 expression, and lowered Bcl-2 expression in KGN cells. Cisplatin also suppressed the activation of the PI3K/AKT signaling pathway and upregulated miR-23a expression in the cells. LBP intervention obviously alleviated cisplatin-induced injuries in KGN cells, and in particular, LBP treatment at the medium dose for 24 h significantly improved KGN cell viability, reduced apoptosis, enhanced their endocrine function, and ameliorated ultrastructural abnormalities. Mechanistically, medium-dose LBP obviously activated the PI3K/AKT pathway by downregulating miR-23a in cisplatin-treated cells, subsequently inhibiting Bax and caspase-3 while upregulating Bcl-2. Overexpression of miR-23a weakened while knockdown of miR-23a significantly enhanced the protective effects of LBP.
CONCLUSIONS
LBP alleviates cisplatin-induced apoptosis in KGN cells by inhibiting miR-23a expression and activating the PI3K/AKT pathway, suggesting a potential therapeutic strategy for ovarian function preservation.
Humans
;
Cisplatin/adverse effects*
;
MicroRNAs/genetics*
;
Female
;
Granulosa Cells/cytology*
;
Apoptosis/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Down-Regulation
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Cell Line, Tumor
;
Cell Survival/drug effects*
6.Csde1 Mediates Neurogenesis via Post-transcriptional Regulation of the Cell Cycle.
Xiangbin JIA ; Wenqi XIE ; Bing DU ; Mei HE ; Jia CHEN ; Meilin CHEN ; Ge ZHANG ; Ke WANG ; Wanjing XU ; Yuxin LIAO ; Senwei TAN ; Yongqing LYU ; Bin YU ; Zihang ZHENG ; Xiaoyue SUN ; Yang LIAO ; Zhengmao HU ; Ling YUAN ; Jieqiong TAN ; Kun XIA ; Hui GUO
Neuroscience Bulletin 2025;41(11):1977-1990
Loss-of-function variants in CSDE1 have been strongly linked to neuropsychiatric disorders, yet the precise role of CSDE1 in neurogenesis remains elusive. In this study, we demonstrate that knockout of Csde1 during cortical development in mice results in impaired neural progenitor proliferation, leading to abnormal cortical lamination and embryonic lethality. Transcriptomic analysis revealed that Csde1 upregulates the transcription of genes involved in the cell cycle network. Applying a dual thymidine-labelling approach, we further revealed prolonged cell cycle durations of neuronal progenitors in Csde1-knockout mice, with a notable extension of the G1 phase. Intersection with CLIP-seq data demonstrated that Csde1 binds to the 3' untranslated region (UTR) of mRNA transcripts encoding cell cycle genes. Particularly, we uncovered that Csde1 directly binds to the 3' UTR of mRNA transcripts encoding Cdk6, a pivotal gene in regulating the transition from the G1 to S phases of the cell cycle, thereby maintaining its stability. Collectively, this study elucidates Csde1 as a novel regulator of Cdk6, sheds new light on its critical roles in orchestrating brain development, and underscores how mutations in Csde1 may contribute to the pathogenesis of neuropsychiatric disorders.
Animals
;
Neurogenesis/genetics*
;
Cell Cycle/genetics*
;
Mice, Knockout
;
Mice
;
Neural Stem Cells/metabolism*
;
DNA-Binding Proteins/metabolism*
;
Cyclin-Dependent Kinase 6/genetics*
;
Cell Proliferation
;
3' Untranslated Regions
;
Cerebral Cortex/embryology*
;
RNA-Binding Proteins
;
Mice, Inbred C57BL
7.Recombinant yeast-cell microcapsules carrying the DNA vaccine against enterotoxigenic Escherichia coli.
Xiafang ZHAO ; Lihong DU ; Baoxia MA ; Shaona JIA ; Yufei LIU ; Yufei ZHU ; Xiaotao MA ; Xiaojun YANG ; Kun XU
Chinese Journal of Biotechnology 2025;41(6):2388-2404
The enterotoxigenic Escherichia coli (ETEC) infection is a major factor restricting the development of animal husbandry. However, the abuse of antibiotics will lead to the antibiotic residues and emergence of antibiotic-resistant bacteria. The existing vaccines face challenges in stimulating intestinal immunity, demonstrating limited prevention effects. Therefore, it is indispensable to develop a new vaccine that is safe and suitable as a feed additive to activate intestinal immunity. This study constructed yeast-cell microcapsules (YCM) carrying the DNA vaccine against ETEC by genetic engineering. Furthermore, animal experiments were carried out to explore the regulatory effects of feeding YCM on the intestinal immune system and intestinal microbiota. Saccharomyces cerevisiae was selected as the oral delivery vehicle (microcapsules) of the DNA vaccine. The codon-optimized nucleic acid sequence of K88, the main antigen of mammal-derived ETEC, was synthesized, and the yeast shuttle vector containing the corresponding DNA vaccine expression cassette was constructed by DNA recombination. The recombinant strain of YCM was prepared by transforming JMY1. Additionally, the characteristics of the YCM strain and its feasibility as an oral vaccine were comprehensively evaluated by the fluorescence reporter assay, gastrointestinal fluid tolerance assay, intestinal epithelial cell adhesion assay, intestinal retention assessment, antiserum detection, and intestinal microbiota detection. The experimental results showed that the DNA vaccine expression cassette was expressed in mammals, and the recombinant strain of YCM could tolerate up to 8 hours of gastrointestinal fluid digestion and had good adhesion to intestinal epithelial cells. The results of mouse feeding experiments indicated that the recombinant strain of YCM could stay in the intestinal tract for at least two weeks, and the DNA vaccine expression cassette carried by YCM entered the intestinal immune system and triggered an immune response to induce the production of specific antibodies. Moreover, feeding YCM recombinant bacteria also improved the abundance of gut microbiota in mice, demonstrating a positive effect in regulating intestinal flora. In summary, we prepared the recombinant strain of YCM carrying the DNA vaccine against ETEC and comprehensively evaluated its characteristics and feasibility as an oral vaccine. Feeding the recombinant YCM could induce specific immune responses and regulate intestinal microbiota. The findings provide a reference for the immunoprevention of ETEC-related animal diseases.
Animals
;
Enterotoxigenic Escherichia coli/genetics*
;
Saccharomyces cerevisiae/metabolism*
;
Vaccines, DNA/genetics*
;
Mice
;
Escherichia coli Infections/immunology*
;
Escherichia coli Vaccines/genetics*
;
Capsules
;
Mice, Inbred BALB C
;
Female
8.Development and evaluation of a competitive ELISA based on a porcine neutralizing Fab antibody against Senecavirus A.
Yubin LIANG ; Xueqing MA ; Yixuan HE ; Caihe WANG ; Kun LI ; Pinghua LI ; Yuanfang FU ; Zengjun LU ; Xiaohua DU ; Xia LIU ; Pu SUN
Chinese Journal of Biotechnology 2025;41(7):2748-2759
Senecavirus A (SVA) is a major viral pathogen causing disease in pigs, and effective monitoring of SVA infection is critical for disease control. In this study, we aimed to develop a reliable ELISA method for rapidly detecting neutralizing antibodies against SVA. We used HEK293F cells to express an SVA-specific porcine Fab antibody and verified the biological activity of the Fab antibody by indirect ELISA, immunofluorescence assay, virus neutralization test, and Western blotting. The Fab antibody was biotinylated and used as a competitive antibody to establish a competitive ELISA (C-ELISA) for detecting neutralizing antibodies against SVA. We then evaluated the C-ELISA in terms of sensitivity, specificity, repeatability, and result agreement rate with the VNT. The results showed that we successfully prepared an SVA-specific porcine Fab antibody, which showed high affinity for SVA. We named this antibody 1M33Fab and designated it as Bio-1M33Fab after biotin labeling. The assay conditions were optimized as follows: the coating concentration of SVA particles being 1 μg/mL, the working concentration of Bio-1M33Fab being 0.5 μg/mL, the optimal serum dilution of 1:10, and the optimal dilution of enzyme-labeled avidin being 1:30 000. At a percent inhibition (PI) of 47%, the assay demonstrated the highest sensitivity (96.88%) and specificity (100%), with no cross-reactivity observed with the positive sera of major porcine viral diseases. The intra-assay coefficient of variation ranged from 1.12% to 7.34%, while the inter-assay coefficient of variation ranged from 1.10% to 8.97%, indicating good repeatability. In the detection of 224 clinical pig serum samples, C-ELISA and VNT showed a result agreement rate of 93.75%. In conclusion, we successfully develop a C-ELISA method for detecting neutralizing antibodies against SVA by using a porcine-derived Fab antibody, which lays a foundation for the development of detection kits.
Animals
;
Swine
;
Antibodies, Neutralizing/immunology*
;
Enzyme-Linked Immunosorbent Assay/methods*
;
Immunoglobulin Fab Fragments/immunology*
;
Antibodies, Viral/immunology*
;
Picornaviridae/immunology*
;
Humans
;
HEK293 Cells
;
Swine Diseases/diagnosis*
;
Picornaviridae Infections/diagnosis*
9.Clinical Significance of Peripheral Blood Immune Cell Population Detection in Diagnosis and Treatment of Unexplained Recurrent Spontaneous Abortion
Yang YANG ; Huibo RU ; Kun XU ; Chun WU ; Shusong WANG ; Lirong DU
Journal of Practical Obstetrics and Gynecology 2024;40(9):745-750
Objective:To detect the expression levels of various immune cells in peripheral blood,and to ex-plore their relationship with unexplained recurrent spontaneous abortion(URSA)and its clinical significance in di-agnosis and treatment.Methods:A total of 351 patients with URSA who visited Hebei Reproductive Health Hospi-tal between January 2020 and September 2022 were enrolled as the URSA group,while a control group compri-sing 30 healthy women who had experienced uncomplicated term delivery once and had no history of adverse pregnancy outcomes during the same period was selected.The levels of various immune cell subsets in peripheral blood during the luteal phase were measured and compared between the two groups.Receiver operating charac-teristic(ROC)curve analysis was performed to determine the optimal cutoff values of immune cell levels that could assist in URSA diagnosis and treatment,while logistic regression analysis was conducted to identify factors influ-encing URSA occurrence.Results:The number and percentage of CD3+CD8+cells in the peripheral blood of the URSA group were significantly lower compared to those in the control group(P<0.05).Conversely,the per-centage of NK cells was significantly higher in the URSA group than in the control group(P<0.05).Logistic re-gression analysis revealed that the increase in CD3+CD8+cell count in peripheral blood during the luteal phase was a protective factor of URSA(OR<1,P<0.05).ROC curve analysis determined optimal cutoff values for im-mune cell levels to assist in the diagnosing and treating URSA:702.82 cells/μl for CD3+CD8+cell count,28.39%for CD3+CD8+cell percentage,and 12.33%for NK cell percentage.After using the optimal cutoff value to convert continuous variables into binary variables,Logistic regression analysis showed that a CD3+CD8+cell count<702.82 cells/μl and an NK cell percentage>12.33%were independent risk factors for URSA(OR>1,P<0.05).Conclusions:The decrease of CD3+CD8+cells in peripheral blood during midluteal phase is closely related to the occurrence of URSA.The number of CD3+CD8+cells(702.82 cells/μl)and the percentage of NK cells(12.33%)can be used as reference values for the diagnosis and treatment of URSA.
10.Clinical Significance of Peripheral Blood Immune Cell Population Detection in Diagnosis and Treatment of Unexplained Recurrent Spontaneous Abortion
Yang YANG ; Huibo RU ; Kun XU ; Chun WU ; Shusong WANG ; Lirong DU
Journal of Practical Obstetrics and Gynecology 2024;40(9):745-750
Objective:To detect the expression levels of various immune cells in peripheral blood,and to ex-plore their relationship with unexplained recurrent spontaneous abortion(URSA)and its clinical significance in di-agnosis and treatment.Methods:A total of 351 patients with URSA who visited Hebei Reproductive Health Hospi-tal between January 2020 and September 2022 were enrolled as the URSA group,while a control group compri-sing 30 healthy women who had experienced uncomplicated term delivery once and had no history of adverse pregnancy outcomes during the same period was selected.The levels of various immune cell subsets in peripheral blood during the luteal phase were measured and compared between the two groups.Receiver operating charac-teristic(ROC)curve analysis was performed to determine the optimal cutoff values of immune cell levels that could assist in URSA diagnosis and treatment,while logistic regression analysis was conducted to identify factors influ-encing URSA occurrence.Results:The number and percentage of CD3+CD8+cells in the peripheral blood of the URSA group were significantly lower compared to those in the control group(P<0.05).Conversely,the per-centage of NK cells was significantly higher in the URSA group than in the control group(P<0.05).Logistic re-gression analysis revealed that the increase in CD3+CD8+cell count in peripheral blood during the luteal phase was a protective factor of URSA(OR<1,P<0.05).ROC curve analysis determined optimal cutoff values for im-mune cell levels to assist in the diagnosing and treating URSA:702.82 cells/μl for CD3+CD8+cell count,28.39%for CD3+CD8+cell percentage,and 12.33%for NK cell percentage.After using the optimal cutoff value to convert continuous variables into binary variables,Logistic regression analysis showed that a CD3+CD8+cell count<702.82 cells/μl and an NK cell percentage>12.33%were independent risk factors for URSA(OR>1,P<0.05).Conclusions:The decrease of CD3+CD8+cells in peripheral blood during midluteal phase is closely related to the occurrence of URSA.The number of CD3+CD8+cells(702.82 cells/μl)and the percentage of NK cells(12.33%)can be used as reference values for the diagnosis and treatment of URSA.

Result Analysis
Print
Save
E-mail