1.Genome Characterization of Streptococcus mitis KHUD 011 Isolated from the Oral Microbiome of a Healthy Korean Individual
Eun-Young JANG ; Doyun KU ; Seok Bin YANG ; Cheul KIM ; Jae-Hyung LEE ; Ji-Hoi MOON
Journal of Korean Dental Science 2025;18(1):20-29
Purpose:
This study aimed to perform a genome characterization of Streptococcus mitis KHUD 011, a strain isolated from the oral microbiome of a healthy Korean individual, and to compare its genomic features with other S. mitis strains.
Materials and Methods:
The strain was identified through 16S rRNA gene sequencing, and its genome was sequenced using the PacBio Sequel II platform. De novo assembly and annotation were performed, followed by comparative genomic analysis with three additional strains (S. mitis NCTC 12261, S022-V3-A4, and B6). Pan-genome and phylogenetic analyses were conducted to identify strain-specific genes and assess inter-strain genomic diversity.
Results:
The genome of S. mitis KHUD 011 consisted of 1,782 protein-coding genes, with a G+C content of 40.24%. Pan-genome analysis identified 1,263 core gene clusters (50.0%), 496 dispensable clusters (19.7%), and 763 strain-specific clusters (30.3%). KHUD 011 displayed 88 strain-specific genes, particularly associated with cell wall/membrane biogenesis, transcriptional regulation, and carbohydrate metabolism. Phylogenetic analysis placed KHUD 011 closely with NCTC 12261, forming a distinct cluster apart from other strains.
Conclusion
The genome characterization of S. mitis KHUD 011 underscores substantial inter-strain genomic diversity influenced by host interactions, ecological niches, and health status. The identified strain-specific genes, particularly those associated with cell wall/ membrane biogenesis, transcriptional regulation, and carbohydrate metabolism, suggest adaptations to the oral microbiome and its interaction with the host. These findings highlight the ecological versatility of S. mitis and the importance of exploring strains from diverse environments to better understand their role within the host and the broader microbiome.
2.Is difficulty of extraction associated with inferior alveolar nerve proximity on computed tomography and increased injury risk?
Jeong-Kui KU ; Sung Min KIM ; Jong-Ki HUH ; Jae-Young KIM
Journal of the Korean Association of Oral and Maxillofacial Surgeons 2025;51(2):80-86
Objectives:
Many three-dimensionally-evaluated difficulty indices for impacted third molars have been suggested; however, their radiological and clinical validation according to the inferior alveolar nerve (IAN) remains unknown. This study aimed to evaluate the association of the difficulty index with IAN proximity and injury risk.
Materials and Methods:
We retrospectively enrolled patients with cone-beam computed tomography (CBCT) for a fully impacted mandibular third molar from January to December 2020. We evaluated the third molar according to the difficulty index based on panoramic x-ray and the nerve index based on CBCT and analyzed postoperative nerve complications. The relationships among nerve proximity, difficulty indices, and nerve complications were evaluated. Data were analyzed using the Pearson’s chi-square test and the Cochran–Armitage test for trends.
Results:
We included 367 subjects (177 males, 28.9±9.8 years) with follow-up of at least 1 month. Twenty-two subjects had nerve complications.Radiologic evaluation showed that third molars with a high nerve index had an increased difficulty index (P=0.001). Nerve complication risk showed a statistically significant correlation with both nerve and difficulty indices.
Conclusion
In conclusion, the difficulty index of an impacted third molar was valid in terms of its spatial relationship with the IAN and in predicting nerve complications.
3.Genome Characterization of Streptococcus mitis KHUD 011 Isolated from the Oral Microbiome of a Healthy Korean Individual
Eun-Young JANG ; Doyun KU ; Seok Bin YANG ; Cheul KIM ; Jae-Hyung LEE ; Ji-Hoi MOON
Journal of Korean Dental Science 2025;18(1):20-29
Purpose:
This study aimed to perform a genome characterization of Streptococcus mitis KHUD 011, a strain isolated from the oral microbiome of a healthy Korean individual, and to compare its genomic features with other S. mitis strains.
Materials and Methods:
The strain was identified through 16S rRNA gene sequencing, and its genome was sequenced using the PacBio Sequel II platform. De novo assembly and annotation were performed, followed by comparative genomic analysis with three additional strains (S. mitis NCTC 12261, S022-V3-A4, and B6). Pan-genome and phylogenetic analyses were conducted to identify strain-specific genes and assess inter-strain genomic diversity.
Results:
The genome of S. mitis KHUD 011 consisted of 1,782 protein-coding genes, with a G+C content of 40.24%. Pan-genome analysis identified 1,263 core gene clusters (50.0%), 496 dispensable clusters (19.7%), and 763 strain-specific clusters (30.3%). KHUD 011 displayed 88 strain-specific genes, particularly associated with cell wall/membrane biogenesis, transcriptional regulation, and carbohydrate metabolism. Phylogenetic analysis placed KHUD 011 closely with NCTC 12261, forming a distinct cluster apart from other strains.
Conclusion
The genome characterization of S. mitis KHUD 011 underscores substantial inter-strain genomic diversity influenced by host interactions, ecological niches, and health status. The identified strain-specific genes, particularly those associated with cell wall/ membrane biogenesis, transcriptional regulation, and carbohydrate metabolism, suggest adaptations to the oral microbiome and its interaction with the host. These findings highlight the ecological versatility of S. mitis and the importance of exploring strains from diverse environments to better understand their role within the host and the broader microbiome.
4.Is difficulty of extraction associated with inferior alveolar nerve proximity on computed tomography and increased injury risk?
Jeong-Kui KU ; Sung Min KIM ; Jong-Ki HUH ; Jae-Young KIM
Journal of the Korean Association of Oral and Maxillofacial Surgeons 2025;51(2):80-86
Objectives:
Many three-dimensionally-evaluated difficulty indices for impacted third molars have been suggested; however, their radiological and clinical validation according to the inferior alveolar nerve (IAN) remains unknown. This study aimed to evaluate the association of the difficulty index with IAN proximity and injury risk.
Materials and Methods:
We retrospectively enrolled patients with cone-beam computed tomography (CBCT) for a fully impacted mandibular third molar from January to December 2020. We evaluated the third molar according to the difficulty index based on panoramic x-ray and the nerve index based on CBCT and analyzed postoperative nerve complications. The relationships among nerve proximity, difficulty indices, and nerve complications were evaluated. Data were analyzed using the Pearson’s chi-square test and the Cochran–Armitage test for trends.
Results:
We included 367 subjects (177 males, 28.9±9.8 years) with follow-up of at least 1 month. Twenty-two subjects had nerve complications.Radiologic evaluation showed that third molars with a high nerve index had an increased difficulty index (P=0.001). Nerve complication risk showed a statistically significant correlation with both nerve and difficulty indices.
Conclusion
In conclusion, the difficulty index of an impacted third molar was valid in terms of its spatial relationship with the IAN and in predicting nerve complications.
5.Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery
Jeong-Kui KU ; Jung-Hoon LIM ; Jung-Ah LIM ; In-Woong UM ; Yu-Mi KIM ; Pil-Young YUN
Tissue Engineering and Regenerative Medicine 2025;22(2):261-271
Background:
Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods:
Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.
Results:
All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.
Conclusion
DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.
6.Establishment of an In Vitro Embryo-Endometrium Model Using Alginate-Embedded Mouse Embryos and Human Embryoid Body
Yoon Young KIM ; Yong Jin KIM ; Jung Woo KIM ; Jiyeon KIM ; Sung Woo KIM ; Seung-Yup KU
Tissue Engineering and Regenerative Medicine 2025;22(1):77-89
BACKGROUND:
Embryo-endometrium cross-talk is one of the critical processes for implantation, and unsuccessful cross-talk leads to infertility. We established an endometrium-embryo (or embryoid bodies, hEBs) in vitro model in 2D and 3D conditions and assessed its potential through the fusion of embryos and the expression of specific markers.
METHODS:
C57BL/6 mouse embryos and human embryoid body (hEB) derived from embryonic stem cells were prepared as embryo models. Mouse endometrium (EM) and human endometrium cell line, HEC-1-A, were prepared, and 2D or 3D EMs were generated. The viability of the 3D endometrium was analyzed, and the optimal ratio of the gelation was revealed. The invasion of the embryos or hEBs was examined by immunostaining and 3D image rendering.
RESULTS:
The embryos and the alternative hEBs were effectively fused into 2D or 3D vitro EM models in both mouse and human models. The fused embryos and hEBs exhibited migration and further development. Notably, the established in vitro model expressed Oct4 and E-Cadherin, markers for early embryonic development; human CG Receptor and Progesterone Receptor, critical for implantation and pregnancy maintenance; and TSH Receptor, Epiregulin, and Prolactin, indicators of endometrial receptivity and embryo implantation.
CONCLUSION
This study marks a significant advancement in the field, as we have successfully established a novel in vitro model for studying embryo-endometrium cross-talk. This model, a crucial tool for understanding fertility and the causes of miscarriage due to failed implantation, provides a unique platform for investigating the complex processes of successful implantation and pregnancy, underscoring its potential impact on reproductive health.
7.Safety and Efficacy of Pivot-Balloon for Severe Tricuspid Regurgitation:The First-in-Man Experiences
Eun Kyoung KIM ; Min-Ku CHON ; Hyun-Sook KIM ; Yong-Hyun PARK ; Sang-Hyun LEE ; Ki Seok CHOO ; Hyung Gon JE ; Dae-Hee KIM ; Tae Oh KIM ; Yoon Seok KOH ; Jae-Hyeong PARK ; Jae-Hwan LEE ; Young Jin CHOI ; Eun Seok SHIN ; Hyuck-Jun YOON ; Seung-Whan LEE ; Joo-Yong HAHN
Korean Circulation Journal 2025;55(1):20-31
Background and Objectives:
Among various emerging catheter-based treatments for severe tricuspid regurgitation (TR), the spacer device can reduce the regurgitation orifice without manipulating the valve leaflet. However, its clinical application has been hampered by traumatic anchoring to the myocardium and the coaxial alignment of the balloon resulting in insufficient TR reduction. This study aimed to evaluate the early-stage safety, technical feasibility, and preliminary efficacy of the novel atraumatic vertical spacer in patients with isolated severe TR.
Methods:
All procedures were guided by fluoroscopy and transthoracic echocardiography.The maximum device placement time with an inflated balloon was 24 hours. Changes in the amount of TR, right ventricular function, and patient hemodynamics were measured during balloon deployment.
Results:
A total of 7 patients (median age 74), underwent successful device implantation without procedure-related complications. During balloon inflation (median 25 minutes), there were no symptoms or signs indicative of TR intolerance. TR was reduced by 1 grade or greater in all patients, with 2 patients exhibiting a reduction of 3 grades, from torrential TR to a moderate degree. Mild TR after balloon inflation was achieved in 3 patients with baseline severe TR. The TR reduction observed during initial balloon deployment was sustained during the subsequent balloon maintenance period.
Conclusions
The Pivot-balloon procedure was safe, technically feasible, and effective in reducing TR in patients with severe TR. No periprocedural complications or adverse cardiovascular events were reported during device placement with TR reduction observed in all patients. However, longer-term follow-up is needed to confirm safety and treatment effect.
8.Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery
Jeong-Kui KU ; Jung-Hoon LIM ; Jung-Ah LIM ; In-Woong UM ; Yu-Mi KIM ; Pil-Young YUN
Tissue Engineering and Regenerative Medicine 2025;22(2):261-271
Background:
Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods:
Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.
Results:
All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.
Conclusion
DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.
9.Establishment of an In Vitro Embryo-Endometrium Model Using Alginate-Embedded Mouse Embryos and Human Embryoid Body
Yoon Young KIM ; Yong Jin KIM ; Jung Woo KIM ; Jiyeon KIM ; Sung Woo KIM ; Seung-Yup KU
Tissue Engineering and Regenerative Medicine 2025;22(1):77-89
BACKGROUND:
Embryo-endometrium cross-talk is one of the critical processes for implantation, and unsuccessful cross-talk leads to infertility. We established an endometrium-embryo (or embryoid bodies, hEBs) in vitro model in 2D and 3D conditions and assessed its potential through the fusion of embryos and the expression of specific markers.
METHODS:
C57BL/6 mouse embryos and human embryoid body (hEB) derived from embryonic stem cells were prepared as embryo models. Mouse endometrium (EM) and human endometrium cell line, HEC-1-A, were prepared, and 2D or 3D EMs were generated. The viability of the 3D endometrium was analyzed, and the optimal ratio of the gelation was revealed. The invasion of the embryos or hEBs was examined by immunostaining and 3D image rendering.
RESULTS:
The embryos and the alternative hEBs were effectively fused into 2D or 3D vitro EM models in both mouse and human models. The fused embryos and hEBs exhibited migration and further development. Notably, the established in vitro model expressed Oct4 and E-Cadherin, markers for early embryonic development; human CG Receptor and Progesterone Receptor, critical for implantation and pregnancy maintenance; and TSH Receptor, Epiregulin, and Prolactin, indicators of endometrial receptivity and embryo implantation.
CONCLUSION
This study marks a significant advancement in the field, as we have successfully established a novel in vitro model for studying embryo-endometrium cross-talk. This model, a crucial tool for understanding fertility and the causes of miscarriage due to failed implantation, provides a unique platform for investigating the complex processes of successful implantation and pregnancy, underscoring its potential impact on reproductive health.
10.Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery
Jeong-Kui KU ; Jung-Hoon LIM ; Jung-Ah LIM ; In-Woong UM ; Yu-Mi KIM ; Pil-Young YUN
Tissue Engineering and Regenerative Medicine 2025;22(2):261-271
Background:
Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods:
Thirty patients (17 male, 13 female; mean age 55.0 ± 8.8 years) requiring bone grafts due to implant fixture exposure (more than four threads; ≥ 3.2 mm) were included, with a total of 96 implants placed. Implants were inserted using a two-stage protocol with DDM/rhBMP-2 grafts. Early loading was initiated at two months postoperatively in the mandible and three months in the maxilla. Clinical outcomes evaluated included primary and secondary stability (implant stability quotient values), healing period, bone width, and marginal bone level assessed via cone-beam computed tomography.
Results:
All implants successfully supported final prosthetics with a torque of 50Ncm, without any osseointegration failures. The average healing period was 69.6 days in the mandible and 90.5 days in the maxilla, with significantly higher secondary stability in the mandible (80.7 ± 6.7) compared to the maxilla (73.0 ± 9.2, p < 0.001). Histological analysis confirmed new bone formation and vascularization.
Conclusion
DDM/rhBMP-2 grafting appears to significantly reduce the healing period, enabling early loading with stable and favorable clinical outcomes.

Result Analysis
Print
Save
E-mail