1.Intestinal stearoyl-coenzyme A desaturase-inhibition improves obesity-associated metabolic disorders.
Yangliu XIA ; Yang ZHANG ; Zhipeng ZHANG ; Nana YAN ; Vorthon SAWASWONG ; Lulu SUN ; Wanwan GUO ; Ping WANG ; Kristopher W KRAUSZ ; Oksana GAVRILOVA ; James M NTAMBI ; Haiping HAO ; Tingting YAN ; Frank J GONZALEZ
Acta Pharmaceutica Sinica B 2025;15(2):892-908
Stearoyl-coenzyme A desaturase 1 (SCD1) catalyzes the rate-limiting step of de novo lipogenesis and modulates lipid homeostasis. Although numerous SCD1 inhibitors were tested for treating metabolic disorders both in preclinical and clinic studies, the tissue-specific roles of SCD1 in modulating obesity-associated metabolic disorders and determining the pharmacological effect of chemical SCD1 inhibition remain unclear. Here a novel role for intestinal SCD1 in obesity-associated metabolic disorders was uncovered. Intestinal SCD1 was found to be induced during obesity progression both in humans and mice. Intestine-specific, but not liver-specific, SCD1 deficiency reduced obesity and hepatic steatosis. A939572, an SCD1-specific inhibitor, ameliorated obesity and hepatic steatosis dependent on intestinal, but not hepatic, SCD1. Mechanistically, intestinal SCD1 deficiency impeded obesity-induced oxidative stress through its novel function of inducing metallothionein 1 in intestinal epithelial cells. These results suggest that intestinal SCD1 could be a viable target that underlies the pharmacological effect of chemical SCD1 inhibition in the treatment of obesity-associated metabolic disorders.
2.Crosstalk between CYP2E1 and PPARα substrates and agonists modulate adipose browning and obesity.
Youbo ZHANG ; Tingting YAN ; Tianxia WANG ; Xiaoyan LIU ; Keisuke HAMADA ; Dongxue SUN ; Yizheng SUN ; Yanfang YANG ; Jing WANG ; Shogo TAKAHASHI ; Qiong WANG ; Kristopher W KRAUSZ ; Changtao JIANG ; Cen XIE ; Xiuwei YANG ; Frank J GONZALEZ
Acta Pharmaceutica Sinica B 2022;12(5):2224-2238
Although the functions of metabolic enzymes and nuclear receptors in controlling physiological homeostasis have been established, their crosstalk in modulating metabolic disease has not been explored. Genetic ablation of the xenobiotic-metabolizing cytochrome P450 enzyme CYP2E1 in mice markedly induced adipose browning and increased energy expenditure to improve obesity. CYP2E1 deficiency activated the expression of hepatic peroxisome proliferator-activated receptor alpha (PPARα) target genes, including fibroblast growth factor (FGF) 21, that upon release from the liver, enhanced adipose browning and energy expenditure to decrease obesity. Nineteen metabolites were increased in Cyp2e1-null mice as revealed by global untargeted metabolomics, among which four compounds, lysophosphatidylcholine and three polyunsaturated fatty acids were found to be directly metabolized by CYP2E1 and to serve as PPARα agonists, thus explaining how CYP2E1 deficiency causes hepatic PPARα activation through increasing cellular levels of endogenous PPARα agonists. Translationally, a CYP2E1 inhibitor was found to activate the PPARα-FGF21-beige adipose axis and decrease obesity in wild-type mice, but not in liver-specific Ppara-null mice. The present results establish a metabolic crosstalk between PPARα and CYP2E1 that supports the potential for a novel anti-obesity strategy of activating adipose tissue browning by targeting the CYP2E1 to modulate endogenous metabolites beyond its canonical role in xenobiotic-metabolism.

Result Analysis
Print
Save
E-mail