1.Protecting our future: environmental hazards and children’s health in the face of environmental threats: a comprehensive overview
Jungha LEE ; Hyo-Bin KIM ; Hun-Jong JUNG ; Myunghee CHUNG ; So Eun PARK ; Kon-Hee LEE ; Won Seop KIM ; Jin-Hwa MOON ; Jung Won LEE ; Jae Won SHIM ; Sang Soo LEE ; Yunkoo KANG ; Young YOO ;
Clinical and Experimental Pediatrics 2024;67(11):589-598
Children face the excitement of a changing world but also encounter environmental threats to their health that were neither known nor suspected several decades ago. Children are at particular risk of exposure to pollutants that are widely dispersed in the air, water, and food. Children and adolescents are exposed to chemical, physical, and biological risks at home, in school, and elsewhere. Actions are needed to reduce these risks for children exposed to a series of environmental hazards. Exposure to a number of persistent environmental pollutants including air pollutants, endocrine disruptors, noise, electromagnetic waves (EMWs), tobacco and other noxious substances, heavy metals, and microplastics, is linked to damage to the nervous and immune systems and affects reproductive function and development. Exposure to environmental hazards is responsible for several acute and chronic diseases that have replaced infectious diseases as the principal cause of illnesses and death during childhood. Children are disproportionately exposed to environmental toxicities. Children drink more water, eat more food, and breathe more frequently than adults. As a result, children have a substantially heavier exposure to toxins present in water, food, or air than adults. In addition, their hand-to-mouth behaviors and the fact that they live and play close to the ground make them more vulnerable than adults. Children undergo rapid growth and development processes that are easily disrupted. These systems are very delicate and cannot adequately repair thetional development in children’s environmental health was the Declaration of the Environment Leaders of the Eight on Children’s Environmental Health by the Group of Eight. In 2002, the World Health Organization launched an initiative to improve children’s environmental protection effort. Here, we review major environmental pollutants and related hazards among children and adolescents.
2.Protecting our future: environmental hazards and children’s health in the face of environmental threats: a comprehensive overview
Jungha LEE ; Hyo-Bin KIM ; Hun-Jong JUNG ; Myunghee CHUNG ; So Eun PARK ; Kon-Hee LEE ; Won Seop KIM ; Jin-Hwa MOON ; Jung Won LEE ; Jae Won SHIM ; Sang Soo LEE ; Yunkoo KANG ; Young YOO ;
Clinical and Experimental Pediatrics 2024;67(11):589-598
Children face the excitement of a changing world but also encounter environmental threats to their health that were neither known nor suspected several decades ago. Children are at particular risk of exposure to pollutants that are widely dispersed in the air, water, and food. Children and adolescents are exposed to chemical, physical, and biological risks at home, in school, and elsewhere. Actions are needed to reduce these risks for children exposed to a series of environmental hazards. Exposure to a number of persistent environmental pollutants including air pollutants, endocrine disruptors, noise, electromagnetic waves (EMWs), tobacco and other noxious substances, heavy metals, and microplastics, is linked to damage to the nervous and immune systems and affects reproductive function and development. Exposure to environmental hazards is responsible for several acute and chronic diseases that have replaced infectious diseases as the principal cause of illnesses and death during childhood. Children are disproportionately exposed to environmental toxicities. Children drink more water, eat more food, and breathe more frequently than adults. As a result, children have a substantially heavier exposure to toxins present in water, food, or air than adults. In addition, their hand-to-mouth behaviors and the fact that they live and play close to the ground make them more vulnerable than adults. Children undergo rapid growth and development processes that are easily disrupted. These systems are very delicate and cannot adequately repair thetional development in children’s environmental health was the Declaration of the Environment Leaders of the Eight on Children’s Environmental Health by the Group of Eight. In 2002, the World Health Organization launched an initiative to improve children’s environmental protection effort. Here, we review major environmental pollutants and related hazards among children and adolescents.
3.Protecting our future: environmental hazards and children’s health in the face of environmental threats: a comprehensive overview
Jungha LEE ; Hyo-Bin KIM ; Hun-Jong JUNG ; Myunghee CHUNG ; So Eun PARK ; Kon-Hee LEE ; Won Seop KIM ; Jin-Hwa MOON ; Jung Won LEE ; Jae Won SHIM ; Sang Soo LEE ; Yunkoo KANG ; Young YOO ;
Clinical and Experimental Pediatrics 2024;67(11):589-598
Children face the excitement of a changing world but also encounter environmental threats to their health that were neither known nor suspected several decades ago. Children are at particular risk of exposure to pollutants that are widely dispersed in the air, water, and food. Children and adolescents are exposed to chemical, physical, and biological risks at home, in school, and elsewhere. Actions are needed to reduce these risks for children exposed to a series of environmental hazards. Exposure to a number of persistent environmental pollutants including air pollutants, endocrine disruptors, noise, electromagnetic waves (EMWs), tobacco and other noxious substances, heavy metals, and microplastics, is linked to damage to the nervous and immune systems and affects reproductive function and development. Exposure to environmental hazards is responsible for several acute and chronic diseases that have replaced infectious diseases as the principal cause of illnesses and death during childhood. Children are disproportionately exposed to environmental toxicities. Children drink more water, eat more food, and breathe more frequently than adults. As a result, children have a substantially heavier exposure to toxins present in water, food, or air than adults. In addition, their hand-to-mouth behaviors and the fact that they live and play close to the ground make them more vulnerable than adults. Children undergo rapid growth and development processes that are easily disrupted. These systems are very delicate and cannot adequately repair thetional development in children’s environmental health was the Declaration of the Environment Leaders of the Eight on Children’s Environmental Health by the Group of Eight. In 2002, the World Health Organization launched an initiative to improve children’s environmental protection effort. Here, we review major environmental pollutants and related hazards among children and adolescents.
4.Protecting our future: environmental hazards and children’s health in the face of environmental threats: a comprehensive overview
Jungha LEE ; Hyo-Bin KIM ; Hun-Jong JUNG ; Myunghee CHUNG ; So Eun PARK ; Kon-Hee LEE ; Won Seop KIM ; Jin-Hwa MOON ; Jung Won LEE ; Jae Won SHIM ; Sang Soo LEE ; Yunkoo KANG ; Young YOO ;
Clinical and Experimental Pediatrics 2024;67(11):589-598
Children face the excitement of a changing world but also encounter environmental threats to their health that were neither known nor suspected several decades ago. Children are at particular risk of exposure to pollutants that are widely dispersed in the air, water, and food. Children and adolescents are exposed to chemical, physical, and biological risks at home, in school, and elsewhere. Actions are needed to reduce these risks for children exposed to a series of environmental hazards. Exposure to a number of persistent environmental pollutants including air pollutants, endocrine disruptors, noise, electromagnetic waves (EMWs), tobacco and other noxious substances, heavy metals, and microplastics, is linked to damage to the nervous and immune systems and affects reproductive function and development. Exposure to environmental hazards is responsible for several acute and chronic diseases that have replaced infectious diseases as the principal cause of illnesses and death during childhood. Children are disproportionately exposed to environmental toxicities. Children drink more water, eat more food, and breathe more frequently than adults. As a result, children have a substantially heavier exposure to toxins present in water, food, or air than adults. In addition, their hand-to-mouth behaviors and the fact that they live and play close to the ground make them more vulnerable than adults. Children undergo rapid growth and development processes that are easily disrupted. These systems are very delicate and cannot adequately repair thetional development in children’s environmental health was the Declaration of the Environment Leaders of the Eight on Children’s Environmental Health by the Group of Eight. In 2002, the World Health Organization launched an initiative to improve children’s environmental protection effort. Here, we review major environmental pollutants and related hazards among children and adolescents.
5.Obesity in Children and Adolescents: 2022 Update of Clinical Practice Guidelines for Obesity by the Korean Society for the Study of Obesity
Eungu KANG ; Yong Hee HONG ; Jaehyun KIM ; Sochung CHUNG ; Kyoung-Kon KIM ; Ji-Hee HAAM ; Bom Taeck KIM ; Eun Mi KIM ; Jung Hwan PARK ; Sang Youl RHEE ; Jee-Hyun KANG ; Young-Jun RHIE
Journal of Obesity & Metabolic Syndrome 2024;33(1):11-19
The prevalence of obesity in children and adolescents has been gradually increasing in recent years and has become a major health problem. Childhood obesity can readily progress to adult obesity. It is associated with obesity-related comorbidities, such as type 2 diabetes mellitus, hypertension, obstructive sleep apnea, non-alcoholic fatty liver disease, and the risk factor for cardiovascular disease. It is important to make an accurate assessment of overweight and obesity in children and adolescents with consideration of growth and development. Childhood obesity can then be prevented and treated using an appropriate treatment goal and safe and effective treatment strategies. This article summarizes the clinical practice guidelines for obesity in children and adolescents that are included in the 8th edition of the Clinical Practice Guidelines for Obesity of the Korean Society for the Study of Obesity.
6.Obesity in Children and Adolescents: 2022 Update of Clinical Practice Guidelines for Obesity by the Korean Society for the Study of Obesity
Eungu KANG ; Yong Hee HONG ; Jaehyun KIM ; Sochung CHUNG ; Kyoung-Kon KIM ; Ji-Hee HAAM ; Bom Taeck KIM ; Eun Mi KIM ; Jung Hwan PARK ; Sang Youl RHEE ; Jee-Hyun KANG ; Young-Jun RHIE
Journal of Obesity & Metabolic Syndrome 2024;33(1):11-19
The prevalence of obesity in children and adolescents has been gradually increasing in recent years and has become a major health problem. Childhood obesity can readily progress to adult obesity. It is associated with obesity-related comorbidities, such as type 2 diabetes mellitus, hypertension, obstructive sleep apnea, non-alcoholic fatty liver disease, and the risk factor for cardiovascular disease. It is important to make an accurate assessment of overweight and obesity in children and adolescents with consideration of growth and development. Childhood obesity can then be prevented and treated using an appropriate treatment goal and safe and effective treatment strategies. This article summarizes the clinical practice guidelines for obesity in children and adolescents that are included in the 8th edition of the Clinical Practice Guidelines for Obesity of the Korean Society for the Study of Obesity.
7.Obesity in Children and Adolescents: 2022 Update of Clinical Practice Guidelines for Obesity by the Korean Society for the Study of Obesity
Eungu KANG ; Yong Hee HONG ; Jaehyun KIM ; Sochung CHUNG ; Kyoung-Kon KIM ; Ji-Hee HAAM ; Bom Taeck KIM ; Eun Mi KIM ; Jung Hwan PARK ; Sang Youl RHEE ; Jee-Hyun KANG ; Young-Jun RHIE
Journal of Obesity & Metabolic Syndrome 2024;33(1):11-19
The prevalence of obesity in children and adolescents has been gradually increasing in recent years and has become a major health problem. Childhood obesity can readily progress to adult obesity. It is associated with obesity-related comorbidities, such as type 2 diabetes mellitus, hypertension, obstructive sleep apnea, non-alcoholic fatty liver disease, and the risk factor for cardiovascular disease. It is important to make an accurate assessment of overweight and obesity in children and adolescents with consideration of growth and development. Childhood obesity can then be prevented and treated using an appropriate treatment goal and safe and effective treatment strategies. This article summarizes the clinical practice guidelines for obesity in children and adolescents that are included in the 8th edition of the Clinical Practice Guidelines for Obesity of the Korean Society for the Study of Obesity.
8.Metabolic syndrome awareness in the general Korean population: results from a nationwide survey
Hyun-Jin KIM ; Mi-Seung SHIN ; Kyung-Hee KIM ; Mi-Hyang JUNG ; Dong-Hyuk CHO ; Ju-Hee LEE ; Kwang Kon KOH
The Korean Journal of Internal Medicine 2024;39(2):272-282
Background/Aims:
Metabolic syndrome (MetS) raises the risk of cardiovascular disease and type 2 diabetes. An awareness of MetS is vital for early detection and proactive management, which can mitigate the risks associated with MetS. Therefore, our study aimed to investigate the level of awareness of MetS among the Korean population.
Methods:
We conducted a nationwide survey between January and February 2023 among a representative sample of the Korean population using an online survey. Information regarding the awareness of MetS and its risk, the importance of lifestyle modification, and health behavior were collected. The question about the awareness of MetS was “How much do you think you know about MetS?” and there were five answers: 1) I know very well, 2) I know well, 3) I know a little, 4) I do not know, and 5) I have no idea. The high-awareness group was defined as those who answered that they knew very well or well.
Results:
Among 1,000 participants (mean age, 45.7 ± 13.2 yr), 29% were unaware of MetS, and only 20.8% had high awareness. The high-awareness group was significantly more knowledgeable about lifestyle modifications and demonstrated better health behaviors. After adjustment for possible confounding factors, younger age, low household income, and absence of comorbidity were independently associated with a lack of awareness regarding MetS.
Conclusions
The high-awareness group showed greater knowledge of the importance of lifestyle modifications and better health behaviors regarding MetS. The findings highlight the need for improved public education and awareness programs regarding MetS.
9.Hyperoxia-Induced ΔR1 : MRI Biomarker of Histological Infarction in Acute Cerebral Stroke
Kye Jin PARK ; Ji-Yeon SUH ; Changhoe HEO ; Miyeon KIM ; Jin Hee BAEK ; Jeong Kon KIM
Korean Journal of Radiology 2022;23(4):446-454
Objective:
To evaluate whether hyperoxia-induced ΔR1 (hyperO2ΔR1) can accurately identify histological infarction in an acute cerebral stroke model.
Materials and Methods:
In 18 rats, MRI parameters, including hyperO2ΔR1, apparent diffusion coefficient (ADC), cerebral blood flow and volume, and 18F-fluorodeoxyglucose uptake on PET were measured 2.5, 4.5, and 6.5 hours after a 60-minutes occlusion of the right middle cerebral artery. Histological examination of the brain was performed immediately following the imaging studies. MRI and PET images were co-registered with digitized histological images. The ipsilateral hemisphere was divided into histological infarct (histological cell death), non-infarct ischemic (no cell death but ADC decrease), and nonischemic (no cell death or ADC decrease) areas for comparisons of imaging parameters. The levels of hyperO2ΔR1 and ADC were measured voxel-wise from the infarct core to the non-ischemic region. The correlation between areas of hyperO2ΔR1-derived infarction and histological cell death was evaluated.
Results:
HyperO2ΔR1 increased only in the infarct area (p ≤ 0.046) compared to the other areas. ADC decreased stepwise from non-ischemic to infarct areas (p = 0.002 at all time points). The other parameters did not show consistent differences among the three areas across the three time points. HyperO2ΔR1 sharply declined from the core to the border of the infarct areas, whereas there was no change within the non-infarct areas. A hyperO2ΔR1 value of 0.04 s-1 was considered the criterion to identify histological infarction. ADC increased gradually from the infarct core to the periphery, without a pronounced difference at the border between the infarct and non-infarct areas. Areas of hyperO2ΔR1 higher than 0.04 s-1 on MRI were strongly positively correlated with histological cell death (r = 0.862; p < 0.001).
Conclusion
HyperO2ΔR1 may be used as an accurate and early (2.5 hours after onset) indicator of histological infarction in acute stroke.
10.Elastase-Positive Neutrophils Are Associated With Refractoriness of Chronic Rhinosinusitis With Nasal Polyps in an Asian Population
Dong Kyu KIM ; Jin Youp KIM ; Young Eun HAN ; Joon Kon KIM ; Hee Suk LIM ; Kyoung Mi EUN ; Seung Koo YANG ; Dae Woo KIM
Allergy, Asthma & Immunology Research 2020;12(1):42-55
PURPOSE: Various immune cells, including eosinophils and neutrophils, are known to contribute to the development of chronic rhinosinusitis with nasal polyps (CRSwNP). However, the current understanding of the role of neutrophils in the development of CRSwNP still remains unclear. Therefore, we investigated risk factors for refractoriness of CRSwNP in an Asian population. METHODS: Protein levels of 17 neutrophil-related mediators in nasal polyps (NPs) were determined by multiplex immunoassay, and exploratory factor analysis using principal component analysis was performed. Immunofluorescence analysis was conducted to detect human neutrophil elastase (HNE) or myeloperoxidase (MPO)-positive cells. Tissue eosinophilic nasal polyp (ENP) and tissue neutrophilia (Neu(high)) were defined as greater than 70 eosinophils and 20 HNE-positive cells, otherwise was classified into non-eosinophilic nasal polyp (NENP) and absence of tissue neutrophilia (Neu(low)). RESULTS: In terms of disease control status, NENP-Neu(low) patients showed the higher rate of disease control than NENP-Neu(high) and ENP-Neu(high) patients. Linear by linear association demonstrated the trend in refractoriness from NENP-Neu(low) to NENP-Neu(high) or ENP-Neu(low) to ENP-Neu(high). When multiple logistic regression was performed, tissue neutrophilia (hazard ratio, 4.38; 95% confidence interval, 1.76-10.85) was found as the strongest risk factor for CRSwNP refractoriness. Additionally, exploratory factor analysis revealed that interleukin (IL)-18, interferon-γ, IL-1Ra, tumor necrosis factor-α, oncostatin M, and MPO were associated with good disease control status, whereas IL-36α and IL-1α were associated with refractory disease control status. In subgroup analysis, HNE-positive cells and IL-36α were significantly upregulated in the refractory group (P = 0.0132 and P = 0.0395, respectively), whereas MPO and IL-18 showed higher expression in the controlled group (P = 0.0002 and P = 0.0009, respectively). Moreover, immunofluorescence analysis revealed that IL-36R⁺HNE⁺-double positive cells were significantly increased in the refractory group compared to the control group. We also found that the ratio of HNE-positive cells to α1 anti-trypsin was increased in the refractory group. CONCLUSIONS: Tissue neutrophilia had an influence on treatment outcomes in the Asian CRSwNP patients. HNE-positive cells and IL-36α may be biomarkers for predicting refractoriness in Asians with CRSwNP. Additionally, imbalances in HNE and α1 anti-trypsin may be associated with pathophysiology of neutrophilic chronic rhinosinusitis.
Asian Continental Ancestry Group
;
Biomarkers
;
Eosinophils
;
Fluorescent Antibody Technique
;
Humans
;
Immunoassay
;
Interleukin 1 Receptor Antagonist Protein
;
Interleukin-18
;
Interleukins
;
Leukocyte Elastase
;
Logistic Models
;
Nasal Polyps
;
Necrosis
;
Neutrophils
;
Oncostatin M
;
Peroxidase
;
Principal Component Analysis
;
Rhinitis
;
Risk Factors
;
Sinusitis

Result Analysis
Print
Save
E-mail