1.Ching Shum Pills alleviates non-alcoholic fatty liver disease in mice by ameliorating lipid metabolism disorders.
Biyun LUO ; Xin YI ; Yijing CAI ; Shiqing ZHANG ; Peng WANG ; Tong LI ; Ken Kin Lam YUNG ; Pingzheng ZHOU
Journal of Southern Medical University 2025;45(9):1840-1849
OBJECTIVES:
To investigate the effect of Ching Shum Pills (CSP) for alleviating non-alcoholic fatty liver disease (NAFLD) and the underlying mechanism.
METHODS:
In a mouse model of NAFLD, the therapeutic effect of CSP was evaluated by measuring serum glucose, lipid profiles (TC, TG, LDL-C, HDL-C), and hepatic function markers. Network pharmacology was employed to identify active compounds in CSP and their targets using TCMSP, HERB, SwissTargetPrediction, GeneCards, OMIM, and DisGeNET. Protein-protein interaction (PPI) networks, Gene Ontology (GO), and KEGG pathway analyses were conducted. Molecular docking (AutoDock Vina) was used to assess the compound-target binding affinities. Quantitative real-time PCR (qRT-PCR) was used to validate the mRNA expressions of the core genes in the liver tissue of the mouse models.
RESULTS:
In the mouse model of NAFLD, treatment with CSP significantly reduced body weight gain and serum TG levels of the mice, and high-dose CSP treatment resulted in obvious reduction of ALT levels and hepatic fat accumulation. Network pharmacology analysis identified quercetin and 2-monolinolenin as the key bioactives in CSP, which target TNF, AKT1, IL6, TP53, and ALB. Docking simulations suggested strong binding between the two core compounds and their target proteins. The results of qRT-PCR showed that high-fat diet induced significant downregulation of Tp53, Cpt1, and Ppara expressions in mice, which was effectively reversed by CSP treatment.
CONCLUSIONS
CSP can improve lipid metabolism disorders in NAFLD mice through a regulatory mechanism involving multiple targets and pathways to reduce liver fat accumulation and protect liver function. The key components in CSP such as quercetin and linolenic acid monoacylglycerol may participate in the regulation of such metabolic processes as fatty acid oxidation by targeting TP53.
Animals
;
Non-alcoholic Fatty Liver Disease/drug therapy*
;
Mice
;
Drugs, Chinese Herbal/pharmacology*
;
Lipid Metabolism/drug effects*
;
Molecular Docking Simulation
;
Disease Models, Animal
;
Liver/metabolism*
;
Male
;
Lipid Metabolism Disorders/drug therapy*
;
PPAR alpha/metabolism*
;
Mice, Inbred C57BL
;
Network Pharmacology
2.Total Ginsenoside Extract from Panax ginseng Enhances Neural Stem Cell Proliferation and Neuronal Differentiation by Inactivating GSK-3β.
Kai-Li LIN ; Ji ZHANG ; Hau-Lam CHUNG ; Xin-Yi WU ; Bin LIU ; Bo-Xin ZHAO ; Stephen Cho-Wing SZE ; Ping-Zheng ZHOU ; Ken Kin-Lam YUNG ; Shi-Qing ZHANG
Chinese journal of integrative medicine 2022;28(3):229-235
OBJECTIVE:
To study the effects of total ginsenosides (TG) extract from Panax ginseng on neural stem cell (NSC) proliferation and differentiation and their underlying mechanisms.
METHODS:
The migration of NSCs after treatment with various concentrations of TG extract (50, 100, or 200 µ g/mL) were monitored. The proliferation of NSCs was examined by a combination of cell counting kit-8 and neurosphere assays. NSC differentiation mediated by TG extract was evaluated by Western blotting and immunofluorescence staining to monitor the expression of nestin and microtubule associated protein 2 (MAP2). The GSK-3β/β-catenin pathway in TG-treated NSCs was examined by Western blot assay. The NSCs with constitutively active GSK-3β mutant were made by adenovirus-mediated gene transfection, then the proliferation and differentiation of NSCs mediated by TG were further verified.
RESULTS:
TG treatment significantly enhanced NSC migration (P<0.01 or P<0.05) and increased the proliferation of NSCs (P<0.01 or P<0.05). TG mediation also significantly upregulated MAP2 expression but downregulated nestin expression (P<0.01 or P<0.05). TG extract also significantly induced GSK-3β phosphorylation at Ser9, leading to GSK-3β inactivation and, consequently, the activation of the GSK-3β/β-catenin pathway (P<0.01 or P<0.05). In addition, constitutive activation of GSK-3β in NSCs by the transfection of GSK-3β S9A mutant was found to significantly suppress TG-mediated NSC proliferation and differentiation (P<0.01 or P<0.05).
CONCLUSION
TG promoted NSC proliferation and neuronal differentiation by inactivating GSK-3β.
Animals
;
Cell Differentiation
;
Cell Proliferation
;
Ginsenosides/pharmacology*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Neural Stem Cells/metabolism*
;
Panax
;
Plant Extracts/pharmacology*
;
Rats
;
beta Catenin/metabolism*
3.Extract of Zuojin Pill (characters: see text) induces apoptosis of SGC-7901 cells via mitochondria-dependent pathway.
Qiu-xian PENG ; Hong-bing CAI ; Jiang-li PENG ; Kin Lam YUNG ; Jue SHI ; Zhi-xian MO
Chinese journal of integrative medicine 2015;21(11):837-845
OBJECTIVETo observe the effects of water extract of Zuojin Pill ([characters: see text], ZJP) on inhibiting the growth of human gastric cancer cell line SGC-7901 and its potential mechanism.
METHODSEffects of ZJP on SGC-7901 cells growth were determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, cell apoptosis and cell cycle were determined by flow cytometry, and apoptosis induction was detected by means of DNA gel electrophoresis. The cellular mechanism of drug-induced cell death was unraveled by assaying oxidative injury level of SGC-7901 cell, mitochondrial membrane potentials, expression of apoptosis-related genes, such as B cell lymphoma/lewkmia-2 (Bcl-2), Bcl-2 associated X protein (Bax) and cleaved caspase-3 and caspase-9.
RESULTSZJP exerted evident inhibitory effect on SGC-7901 cells by activating production of reactive oxygen species and elevating Bax/Bcl-2 ratio in SGC-7901 cells, leading to attenuation of mitochondrial membrane potential and DNA fragmentation.
CONCLUSIONSZJP inhibits the cancer cell growth via activating mitochondria-dependent apoptosis pathway. ZJP can potentially serve as an antitumor agent.
Antineoplastic Agents ; pharmacology ; Apoptosis ; drug effects ; Blotting, Western ; Cell Line, Tumor ; Cell Survival ; Colorimetry ; Comet Assay ; DNA Fragmentation ; Drugs, Chinese Herbal ; pharmacology ; Flow Cytometry ; Humans ; Mitochondrial Membranes ; drug effects ; Reactive Oxygen Species ; metabolism

Result Analysis
Print
Save
E-mail