1.Medication rules and mechanisms of treating chronic renal failure by Jinling medical school based on data mining, network pharmacology, and experimental validation.
Jin-Long WANG ; Wei WU ; Yi-Gang WAN ; Qi-Jun FANG ; Yu WANG ; Ya-Jing LI ; Fee-Lan CHONG ; Sen-Lin MU ; Chu-Bo HUANG ; Huang HUANG
China Journal of Chinese Materia Medica 2025;50(6):1637-1649
This study aims to explore the medication rules and mechanisms of treating chronic renal failure(CRF) by Jinling medical school based on data mining, network pharmacology, and experimental validation systematically and deeply. Firstly, the study selected the papers published by the inherited clinicians in Jinling medical school in Chinese journals using the subject headings named "traditional Chinese medicine(TCM) + chronic renal failure", "TCM + chronic renal inefficiency", or "TCM + consumptive disease" in China National Knowledge Infrastructure, Wanfang, and VIP Chinese Science and Technology Periodical Database and screened TCM formulas for treating CRF according to inclusion and exclusion criteria. The study analyzed the frequency of use of single TCM and the four properties, five tastes, channel tropism, and efficacy of TCM used with high frequency and performed association rule and clustering analysis, respectively. As a result, a total of 215 TCM formulas and 235 different single TCM were screened, respectively. The TCM used with high frequency included Astragali Radix, Rhei Radix et Rhizoma, Salviae Miltiorrhizae Radix et Rhizoma, Poria, and Atractylodis Macrocephalae Rhizoma(top 5). The single TCM characterized by "cold properties, sweet flavor, and restoring spleen channel" and the TCM with the efficacy of tonifying deficiency had the highest frequency of use, respectively. Then, the TCM with the rules of "blood-activating and stasis-removing" and "diuretic and dampness-penetrating" appeared. In addition, the core combination of TCM [(Hexin Formula, HXF)] included "Astragali Radix, Rhei Radix et Rhizoma, Poria, Salviae Miltiorrhizae Radix, and Angelicae Sinensis Radix". The network pharmacology analysis showed that HXF had 91 active compounds and 250 corresponding protein targets including prostaglandin-endoperoxide synthase 2(PTGS2), PTGS1, sodium voltage-gated channel alpha subunit 5(SCN5A), cholinergic receptor muscarinic 1(CHRM1), and heat shock protein 90 alpha family class A member 1(HSP90AA1)(top 5). Gene Ontology(GO) function analysis revealed that the core targets of HXF predominantly affected biological processes, cellular components, and molecular functions such as positive regulation of transcription by ribonucleic acid polymerase Ⅱ and DNA template transcription, formation of cytosol, nucleus, and plasma membrane, and identical protein binding and enzyme binding. Kyoto Encyclopedia of Genes and Genomes(KEGG) analysis revealed that CRF-related genes were involved in a variety of signaling pathways and cellular metabolic pathways, primarily involving "phosphatidylinositol 3-kinase(PI3K)-protein kinase B(Akt) pathway" and "advanced glycation end products-receptor for advanced glycation end products". Molecular docking results showed that the active components in HXF such as isomucronulatol 7-O-glucoside, betulinic acid, sitosterol, and przewaquinone B might be crucial in the treatment of CRF. Finally, a modified rat model with renal failure induced by adenine was used, and the in vivo experimental confirmation was performed based on the above-mentioned predictions. The results verify that HXF can regulate mitochondrial autophagy in the kidneys and the PI3K-Akt-mammalian target of rapamycin(mTOR) signaling pathway activation at upstream, so as to alleviate renal tubulointerstitial fibrosis and then delay the progression of CRF.
Data Mining
;
Drugs, Chinese Herbal/chemistry*
;
Network Pharmacology
;
Humans
;
Kidney Failure, Chronic/metabolism*
;
Medicine, Chinese Traditional
;
China
2.Colon Dialysis with Yishen Decoction Improves Autophagy Disorder in Intestinal Mucosal Epithelial Cells of Chronic Renal Failure by Regulating SIRT1 Pathway.
Yan-Jun FAN ; Jing-Ai FANG ; Su-Fen LI ; Ting LIU ; Wen-Yuan LIU ; Ya-Ling HU ; Rui-Hua WANG ; Hui LI ; Da-Lin SUN ; Guang ZHANG ; Zi-Yuan ZHANG
Chinese journal of integrative medicine 2025;31(10):899-907
OBJECTIVE:
To explore the mechanism of colon dialysis with Yishen Decoction (YS) in improving the autophagy disorder of intestinal epithelial cells in chronic renal failure (CRF) in vivo and in vitro.
METHODS:
Thirty male SD rats were randomly divided into normal, CRF, and colonic dialysis with YS groups by a random number table method (n=10). The CRF model was established by orally gavage of adenine 200 mg/(kg•d) for 4 weeks. CRF rats in the YS group were treated with colonic dialysis using YS 20 g/(kg•d) for 14 consecutive days. The serum creatinine (SCr) and urea nitrogen (BUN) levels were detected by enzyme-linked immunosorbent assay. Pathological changes of kidney and colon tissues were observed by hematoxylin and eosin staining. Autophagosome changes in colonic epithelial cells was observed with electron microscopy. In vitro experiments, human colon cancer epithelial cells (T84) were cultured and divided into normal, urea model (74U), YS colon dialysis, autophagy activator rapamycin (Ra), autophagy inhibitor 3-methyladenine (3-MA), and SIRT1 activator resveratrol (Re) groups. RT-PCR and Western blot were used to detect the mRNA and protein expressions of zonula occludens-1 (ZO-1), Claudin-1, silent information regulator sirtuin 1 (SIRT1), LC3, and Beclin-1 both in vitro and in vivo.
RESULTS:
Colonic dialysis with YS decreased SCr and BUN levels in CRF rats (P<0.05), and alleviated the pathological changes of renal and colon tissues. Expressions of SIRT1, ZO-1, Claudin-1, Beclin-1, and LC3II/I were increased in the YS group compared with the CRF group in vivo (P<0.05). In in vitro study, compared with normal group, the expressions of SIRT1, ZO-1, and Claudin-1 were decreased, and expressions of Beclin-1, and LC3II/I were increased in the 74U group (P<0.05). Compared with the 74U group, expressions of SIRT1, ZO-1, and Claudin-1 were increased, whereas Beclin-1, and LC3II/I were decreased in the YS group (P<0.05). The treatment of 3-MA and rapamycin regulated autophagy and the expression of SIRT1. SIRT1 activator intervention up-regulated autophagy as well as the expressions of ZO-1 and Claudin-1 compared with the 74U group (P<0.05).
CONCLUSION
Colonic dialysis with YS could improve autophagy disorder and repair CRF intestinal mucosal barrier injury by regulating SIRT1 expression in intestinal epithelial cells.
Animals
;
Sirtuin 1/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Autophagy/drug effects*
;
Male
;
Intestinal Mucosa/drug effects*
;
Rats, Sprague-Dawley
;
Epithelial Cells/metabolism*
;
Colon/drug effects*
;
Humans
;
Kidney Failure, Chronic/drug therapy*
;
Signal Transduction/drug effects*
;
Renal Dialysis
;
Rats
;
Kidney/drug effects*
3.Icariin improves renal interstitial fibrosis in a rat model of chronic renal failure by regulating mitochondrial dynamics.
Meng WANG ; Ling-Chen WANG ; Xiao-Xuan FENG ; Yuan ZHOU ; Chao-Yang YE ; Chen WANG
China Journal of Chinese Materia Medica 2022;47(8):2170-2177
This study aims to explore the effect of icariin(ICA) on mitochondrial dynamics in a rat model of chronic renal failure(CRF) and to investigate the molecular mechanism of ICA against renal interstitial fibrosis(RIF). CRF was induced in male Sprague-Dawley(SD) rats with 5/6(ablation and infarction, A/I) surgery(right kidney ablation and 2/3 infarction of the left kidney). Four weeks after surgery, the model rats were randomized into the following groups: 5/6(A/I) group, 5/6(A/I)+low-dose ICA group, and 5/6(A/I)+high-dose ICA group. Another 12 rats that received sham operation were randomly classified into 2 groups: sham group and sham+ICAH group. Eight weeks after treatment, the expression of collagen-Ⅰ(Col-Ⅰ), collagen-Ⅲ(Col-Ⅲ), mitochondrial dynamics-related proteins(p-Drp1 S616, p-Drp1 S637, Mfn1, Mfn2), and mitochondrial function-related proteins(TFAM, ATP6) in the remnant kidney tissues was detected by Western blot. The expression of α-smooth muscle actin(α-SMA) was examined by immunohistochemical(IHC) staining. The NRK-52 E cells, a rat proximal renal tubular epithelial cell line, were cultured in vitro and treated with ICA of different concentration. Cell viability was detected by CCK-8 assay. In NRK-52 E cells stimulated with 20 ng·mL~(-1) TGF-β1 for 24 h, the effect of ICA on fibronectin(Fn), connective tissue growth factor(CTGF), p-Drp1 S616, p-Drp1 S637, Mfn1, Mfn2, TFAM, and ATP6 was detected by Western blot, and the ATP content and the mitochondrial morphology were determined. The 20 ng·mL~(-1) TGF-β1-stimulated NRK-52 E cells were treated with or without 5 μmol·L~(-1) ICA+10 μmol·L~(-1) mitochondrial fusion promoter M1(MFP-M1) for 24 h and the expression of fibrosis markers Fn and CTGF was detected by Western blot. Western blot result showed that the levels of Col-Ⅰ, Col-Ⅲ, and p-Drp1 S616 were increased and the levels of p-Drp1 S637, Mfn1, Mfn2, TFAM, and ATP6 were decreased in 5/6(A/I) group compared with those in the sham group. The levels of Col-Ⅰ, Col-Ⅲ, and p-Drp1 S616 were significantly lower and the levels of p-Drp1 S637, Mfn1, Mfn2, TFAM, and ATP6 were significantly higher in ICA groups than that in 5/6(A/I) group. IHC staining demonstrated that for the expression of α-SMA in the renal interstitium was higher in the 5/6(A/I) group than in the sham group and that the expression in the ICA groups was significantly lower than that in the 5/6(A/I) group. Furthermore, the improvement in the fibrosis, mitochondrial dynamics, and mitochondrial function were particularly prominent in rats receiving the high dose of ICA. The in vitro experiment revealed that ICA dose-dependently inhibited the increase of Fn, CTGF, and p-Drp1 S616, increased p-Drp1 S637, Mfn1, Mfn2, TFAM, and ATP6, elevated ATP content, and improved mitochondrial morphology of NRK-52 E cells stimulated by TGF-β1. ICA combined with MFP-M1 further down-regulated the expression of Fn and CTGF in NRK-52 E cells stimulated by TGF-β1 compared with ICA alone. In conclusion, ICA attenuated RIF of CRF by improving mitochondrial dynamics.
Adenosine Triphosphate/pharmacology*
;
Animals
;
Female
;
Fibrosis
;
Flavonoids
;
Humans
;
Infarction/pathology*
;
Kidney
;
Kidney Failure, Chronic
;
Male
;
Mitochondrial Dynamics
;
Rats
;
Rats, Sprague-Dawley
;
Renal Insufficiency, Chronic
;
Transforming Growth Factor beta1/metabolism*
4.Improvement in Multiple Metastatic Calcinosis Cutis Lesions after Hemodialysis in a Patient with Chronic Renal Failure: A Case Report
In Hye CHOI ; Chul Jong PARK ; Kyung Ho LEE
Korean Journal of Dermatology 2019;57(5):270-273
Metastatic calcinosis cutis refers to the deposition of calcium salts in normal tissue secondary to an underlying defect in calcium and/or phosphate metabolism. It commonly affects periarticular areas in patients with chronic renal failure. We report a case of a 51-year-old man with a past medical history of peritoneal dialysis for chronic renal failure, who presented with multiple yellowish nodules on his right thumb. In view of the asymptomatic non-inflamed fluctuating nodules, the differential diagnoses included bacterial, tuberculous, atypical mycobacterial, or fungal infections. Histopathological and radiological examinations revealed calcifications in the right thumb and shoulder with elevated serum phosphorus and parathyroid hormone levels. The lesions improved after the patient was switched from peritoneal dialysis to hemodialysis. We report a case of metastatic calcinosis cutis in a patient with chronic renal failure. We emphasize the importance of imaging for accurate diagnosis and follow-up of calcinosis cutis and that hemodialysis scores over peritoneal dialysis in the treatment of this condition.
Calcinosis
;
Calcium
;
Diagnosis
;
Diagnosis, Differential
;
Follow-Up Studies
;
Humans
;
Kidney Failure, Chronic
;
Metabolism
;
Middle Aged
;
Parathyroid Hormone
;
Peritoneal Dialysis
;
Phosphorus
;
Renal Dialysis
;
Salts
;
Shoulder
;
Thumb
5.Big Data Research in Chronic Kidney Disease.
Xiao-Xi ZENG ; Jing LIU ; Liang MA ; Ping FU
Chinese Medical Journal 2018;131(22):2647-2650
6.Association of serum mineral parameters with mortality in hemodialysis patients: Data from the Korean end-stage renal disease registry.
Yunmi KIM ; Kyung Don YOO ; Hyo Jin KIM ; Junga KOH ; Yeonsil YU ; Young Joo KWON ; Gheun Ho KIM ; Tae Hyun YOO ; Joongyub LEE ; Dong Chan JIN ; Bum Soon CHOI ; Yeong Hoon KIM ; Kook Hwan OH
Kidney Research and Clinical Practice 2018;37(3):266-276
BACKGROUND: We investigated the associations between mineral metabolism parameters and mortality to identify optimal targets in Korean hemodialysis patients. METHODS: Among hemodialysis patients registered in the end-stage renal disease registry of the Korean Society of Nephrology between March 2012 and June 2017, those with serum calcium, phosphorus, and intact parathyroid hormone (iPTH) measured at enrollment were included. Association of serum levels of calcium, phosphorus, and iPTH with all-cause mortality was analyzed. RESULTS: Among 21,433 enrolled patients, 3,135 (14.6%) died during 24.8 ± 14.5 months of follow-up. After multivariable adjustment, patients in the first quintile of corrected calcium were associated with lower mortality (hazard ratio [HR], 0.84; 95% confidence interval [95% CI], 0.71–0.99; P = 0.003), while those in the fifth quintile were associated with higher mortality (HR, 1.39; 95% CI, 1.20–1.61; P < 0.001) compared with those in the third quintile. For phosphorus, only the lowest quintile was significantly associated with increased mortality (HR, 1.24; 95% CI, 1.08–1.43; P = 0.003). The lowest (HR, 1.18; 95% CI, 1.02–1.36; P = 0.026) and highest quintiles of iPTH (HR, 1.24; 95% CI, 1.05–1.46; P = 0.013) were associated with increased mortality. For target counts achieved according to the Kidney Disease Outcomes Quality Initiative guideline, patients who did not achieve any mineral parameter targets hadhigher mortality than those who achieved all three targets (HR, 1.37; 95% CI, 1.12–1.67; P = 0.003). CONCLUSION: In Korean hemodialysis patients, high serum calcium, low phosphorus, and high and low iPTH levels were associated with increased all-cause mortality.
Calcium
;
Follow-Up Studies
;
Humans
;
Kidney Diseases
;
Kidney Failure, Chronic*
;
Metabolism
;
Miners*
;
Mortality*
;
Nephrology
;
Parathyroid Hormone
;
Phosphorus
;
Renal Dialysis*
7.Vascular Calcification: Current Genetics Underlying This Complex Phenomenon.
Nonanzit PÉREZ-HERNÁNDEZ ; Gad APTILON-DUQUE ; Ruben BLACHMAN-BRAUN ; Gilberto VARGAS-ALARCÓN ; Adrián Asael RODRÍGUEZ-CORTÉS ; Shely AZRAD-DANIEL ; Rosalinda POSADAS-SÁNCHEZ ; José Manuel RODRÍGUEZ-PÉREZ
Chinese Medical Journal 2017;130(9):1113-1121
OBJECTIVEVascular calcification is the consequence of the complex interaction between genetic, environmental, and vascular factors, which ultimately lead to the deposition of calcium in the tunica intima (atherosclerotic calcification) or tunica media (Mönckenberg's sclerosis). Vascular calcification is also closely related to other pathologies, such as diabetes mellitus, dyslipidemia, and chronic kidney disease. It has been concluded that the degree of vascular calcification may vary from person to person, even if the associated pathologies and environmental factors are the same. Therefore, this suggests an important genetic contribution to the development of vascular calcification. This review aimed to find the most recent evidence about vascular calcification pathophysiology regarding the genetic aspects and molecular pathways.
DATA SOURCESWe conducted an exhaustive search in Scopus, EBSCO, and PubMed with the keywords "genetics and vascular calcification", "molecular pathways, genetic and vascular calcification" and included the main articles from January 1995 up to August 2016. We focused on the most recent evidence about vascular calcification pathophysiology regarding the genetic aspects and molecular pathways.
STUDY SELECTIONThe most valuable published original and review articles related to our objective were selected.
RESULTSVascular calcification is a multifactorial disease; thus, its pathophysiology cannot be explained by a single specific factor, rather than by the result of the association of several genetic variants, molecular pathway interactions, and environmental factors that promote its development.
CONCLUSIONAlthough several molecular aspects of this mechanism have been elucidated, there is still a need for a better understanding of the factors that predispose to this disease.
Diabetes Mellitus ; metabolism ; physiopathology ; Dyslipidemias ; metabolism ; physiopathology ; Humans ; Kidney Failure, Chronic ; metabolism ; physiopathology ; Renal Insufficiency, Chronic ; metabolism ; physiopathology ; Tunica Intima ; metabolism ; physiopathology ; Tunica Media ; metabolism ; physiopathology ; Vascular Calcification ; metabolism ; physiopathology
8.Bushen Huoxue Recipe Inhibited Vascular Calcification in Chronic Renal Failure Rats by Regulating BMP-2/Runx2/Osterix Signal Pathway.
Shi-yi LIU ; Ning ZHANG ; Xiang-fei MENG ; Shi-Wei LIU ; Hong-wei ZHU ; Lan-fang LI ; Chun-ling ZHANG
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(3):327-332
OBJECTIVETo observe the effect of Bushen Huoxue Recipe (BHR) on inhibiting vascular calcification (VC) in chronic renal failure (CRF) rats by regulating BMP-2/Runx2/Osterix signal pathway, and to explore its possible mechanism.
METHODSThirty SD rats were randomly divided into the normal group, the model group, and the BHR group, 10 in each group. Rats in the model group and the BHR group were administered with 250 mg/kg adenine suspension by gastroagavage and fed with 1.8% high phosphorus forage, once per day in the first 4 weeks, and then gastric administration of adenine suspension was changed to once per two days in the following 5-8 weeks. Rats in the BHR group were administered with BHR at the daily dose of 55 g/kg by gastrogavage in the first 8 weeks, once per day. Equal volume of normal saline was given to rats in the normal group by gastrogavage for 8 weeks. Histological changes in renal tissue and aorta VC were observed by HE staining and alizarin red staining respectively. Levels of calcium (Ca), phosphorus (P), serum creatinine (Cr), blood urea nitrogen (BUN), and intact parathyroid hormone (iPTH) in serum were detected. Protein expression levels of bone morphogenetic protein (BMP-2), Runt related transcription factor (Runx2) , and Osterix were detected by Western blot.
RESULTSHE staining showed that compared with the normal group, disordered glomerular structure, tubular ectasia and dropsy, intracavitary inflammatory cell infiltration, dark brown crystal deposition in kidney tubules, renal interstitial fibrosis, and decreased number of renal blood vessels in the model group. Compared with the model group, normal glomerular numbers increased more, reduced degree of tubular ectasia, decreased number of inflammatory cells, and reduced adenine crystal deposition in the BHR group. Alizarin red staining showed that compared with the normal group, calcified nodes could be found in the model group, with extensive deposition of red particle in aorta. Compared with the model group, calcified nodes were reduced in the BHR group. Compared with normal group, serum levels of P, SCr, BUN, and iPTH significantly increased, serum Ca level significantly decreased, protein expressions of BMP-2, Runx2, Osterix also increased in the model group (P < 0.05, P < 0.01). Compared with the model group, serum levels of P, SCr, BUN, and iPTH levels significantly decreased, serum Ca level significantly increased, protein expressions of BMP-2, Runx2, Osterix also decreased in the BHD group (P < 0.05, P < 0.01).
CONCLUSIONBHD could improve renal function, Ca-P metabolism, and renal histological changes in CHF rats, down-regulate the expression level of BMP-2/Runx2/Osterix signal pathway in vascular calcification of CRF, which might be one of the mechanisms for inhibiting VC in CHF.
Animals ; Blood Urea Nitrogen ; Bone Morphogenetic Protein 2 ; metabolism ; Core Binding Factor Alpha 1 Subunit ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; Kidney ; pathology ; Kidney Failure, Chronic ; drug therapy ; metabolism ; Kidney Function Tests ; Kidney Tubules ; pathology ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Signal Transduction ; drug effects ; Transcription Factors ; metabolism ; Vascular Calcification ; drug therapy
9.Adenosine monophosphate-activated protein kinase in diabetic nephropathy.
Kidney Research and Clinical Practice 2016;35(2):69-77
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease, and its pathogenesis is complex and has not yet been fully elucidated. Abnormal glucose and lipid metabolism is key to understanding the pathogenesis of DN, which can develop in both type 1 and type 2 diabetes. A hallmark of this disease is the accumulation of glucose and lipids in renal cells, resulting in oxidative and endoplasmic reticulum stress, intracellular hypoxia, and inflammation, eventually leading to glomerulosclerosis and interstitial fibrosis. There is a growing body of evidence demonstrating that dysregulation of 5' adenosine monophosphate-activated protein kinase (AMPK), an enzyme that plays a principal role in cell growth and cellular energy homeostasis, in relevant tissues is a key component of the development of metabolic syndrome and type 2 diabetes mellitus; thus, targeting this enzyme may ameliorate some pathologic features of this disease. AMPK regulates the coordination of anabolic processes, with its activation proven to improve glucose and lipid homeostasis in insulin-resistant animal models, as well as demonstrating mitochondrial biogenesis and antitumor activity. In this review, we discuss new findings regarding the role of AMPK in the pathogenesis of DN and offer suggestions for feasible clinical use and future studies of the role of AMPK activators in this disorder.
Adenosine*
;
AMP-Activated Protein Kinases
;
Anoxia
;
Diabetes Mellitus, Type 2
;
Diabetic Nephropathies*
;
Endoplasmic Reticulum Stress
;
Fibrosis
;
Glucose
;
Homeostasis
;
Inflammation
;
Kidney Failure, Chronic
;
Lipid Metabolism
;
Models, Animal
;
Organelle Biogenesis
;
Oxidative Stress
;
Protein Kinases*
10.Shenshuai Yingyang capsule ameliorates muscle atrophy in rats with chronic renal failure: role of Wnt7a-Akt/mTOR signal pathway.
Ming WANG ; Dongtao WANG ; Yi YIN ; Lu LU ; Ying SHI ; Yanfeng HUANG ; Dexiu CHEN ; Lianbo WEI
Journal of Southern Medical University 2015;35(8):1170-1174
OBJECTIVETo observe the effect of Shenshuai Yingyang Capsule (SSYYJN) in ameliorating muscle atrophy in rats with chronic renal failure (CRF) and explore the role of Wnt7a-Akt/mTOR signal pathway in mediating this effect.
METHODSMale rats were randomly assigned to 5/6 nephrectomy group and sham-operated group, and the former group was further randomly divided into CRF model group, KA group, and SSYYJN group. The size of anterior tibia muscle was examined microscopically with HE staining. Protein synthesis in the soleus muscle was investigated by (14)C-phenylalanine experiment, and the expression of Wnt7a, frizzled-7, phospho-Akt, phospho-mTOR and GAPDH were detected with Western blotting.
RESULTSThe body weight, the wet and dry weight, cross-sectional area, and muscle protein synthesis of the anterior tibia muscles, and expressions of the proteins in the Wnt7a/Akt signaling pathway all increased significantly in SSYYJN and KA groups as compared with those in the model group.
CONCLUSIONSSYYJN can effectively improve muscle atrophy in the rat model of CRF possibly by reversing the reduction in the expressions of Wnt7a/Akt signaling pathway proteins in the skeletal muscles.
Animals ; Capsules ; Drugs, Chinese Herbal ; pharmacology ; Kidney Failure, Chronic ; complications ; Male ; Muscle Proteins ; biosynthesis ; Muscle, Skeletal ; drug effects ; Muscular Atrophy ; drug therapy ; Nephrectomy ; Proto-Oncogene Proteins ; metabolism ; Rats ; Signal Transduction ; TOR Serine-Threonine Kinases ; metabolism ; Wnt Proteins ; metabolism

Result Analysis
Print
Save
E-mail