1.Lactate metabolism and acute kidney injury.
Hui LI ; Qian REN ; Min SHI ; Liang MA ; Ping FU
Chinese Medical Journal 2025;138(8):916-924
Acute kidney injury (AKI) is a common clinically critical syndrome in hospitalized patients with high morbidity and mortality. At present, the mechanism of AKI has not been fully elucidated, and no therapeutic drugs exist. As known, glycolytic product lactate is a key metabolite in physiological and pathological processes. The kidney is an important gluconeogenic organ, where lactate is the primary substrate of renal gluconeogenesis in physiological conditions. During AKI, altered glycolysis and gluconeogenesis in kidneys significantly disturb the lactate metabolic balance, which exert impacts on the severity and prognosis of AKI. Additionally, lactate-derived posttranslational modification, namely lactylation, is novel to AKI as it could regulate gene transcription of metabolic enzymes involved in glycolysis or Warburg effect. Protein lactylation widely exists in human tissues and may severely affect non-histone functions. Moreover, the strategies of intervening lactate metabolic pathways are expected to bring a new dawn for the treatment of AKI. This review focused on renal lactate metabolism, especially in proximal renal tubules after AKI, and updated recent advances of lactylation modification, which may help to explore potential therapeutic targets against AKI.
Humans
;
Acute Kidney Injury/metabolism*
;
Lactic Acid/metabolism*
;
Animals
;
Glycolysis/physiology*
;
Gluconeogenesis/physiology*
;
Kidney/metabolism*
2.Global burden of non-communicable diseases attributable to kidney dysfunction with projection into 2040.
Jing CHEN ; Chunyang LI ; Ci Li Nong BU ; Yujiao WANG ; Mei QI ; Ping FU ; Xiaoxi ZENG
Chinese Medical Journal 2025;138(11):1334-1344
BACKGROUND:
Spatiotemporal disparities exist in the disease burden of non-communicable diseases (NCDs) attributable to kidney dysfunction, which has been poorly assessed. The present study aimed to evaluate the spatiotemporal trends of the global burden of NCDs attributable to kidney dysfunction and to predict future trends.
METHODS:
Data on NCDs attributable to kidney dysfunction, quantified using deaths and disability-adjusted life-years (DALYs), were extracted from the Global Burden of Diseases Injuries, and Risk Factors (GBD) Study in 2019. Estimated annual percentage change (EAPC) of age-standardized rate (ASR) was calculated with linear regression to assess the changing trend. Pearson's correlation analysis was used to determine the association between ASR and sociodemographic index (SDI) for 21 GBD regions. A Bayesian age-period-cohort (BAPC) model was used to predict future trends up to 2040.
RESULTS:
Between 1990 and 2019, the absolute number of deaths and DALYs from NCDs attributable to kidney dysfunction increased globally. The death cases increased from 1,571,720 (95% uncertainty interval [UI]: 1,344,420-1,805,598) in 1990 to 3,161,552 (95% UI: 2,723,363-3,623,814) in 2019 for both sexes combined. Both the ASR of death and DALYs increased in Andean Latin America, the Caribbean, Central Latin America, Southeast Asia, Oceania, and Southern Sub-Saharan Africa. In contrast, the age-standardized metrics decreased in the high-income Asia Pacific region. The relationship between SDI and ASR of death and DALYs was negatively correlated. The BAPC model indicated that there would be approximately 5,806,780 death cases and 119,013,659 DALY cases in 2040 that could be attributed to kidney dysfunction. Age-standardized death of cardiovascular diseases (CVDs) and CKD attributable to kidney dysfunction were predicted to decrease and increase from 2020 to 2040, respectively.
CONCLUSION
NCDs attributable to kidney dysfunction remain a major public health concern worldwide. Efforts are required to attenuate the death and disability burden, particularly in low and low-to-middle SDI regions.
Humans
;
Noncommunicable Diseases/epidemiology*
;
Global Burden of Disease
;
Disability-Adjusted Life Years
;
Male
;
Female
;
Risk Factors
;
Middle Aged
;
Kidney Diseases/epidemiology*
;
Bayes Theorem
;
Adult
;
Aged
;
Global Health
;
Quality-Adjusted Life Years
3.Atypical metastatic presentation of sporadic clear cell renal cell carcinoma: Anindolent unilateral intranasal mass in a 60-year-old male with recurrent epistaxis
Eldimson Bermudo ; Jon Paolo Tan ; Randell Arias ; Al-zamzam Abubakar
Philippine Journal of Pathology 2025;10(1):37-42
Renal cell carcinoma (RCC) is notorious for its propensity to metastasize even after a prolonged period of remission following nephrectomy. The metastatic spread can occur months or even years after initial treatment, which necessitates a heightened level of clinical awareness and vigilance in patients with a history of renal malignancy, particularly who present with new or unexplained nasal symptoms. Although RCC most commonly metastasize to the lungs, bones and liver, its involvement in the nasal cavity is exceedingly rare, posing significant diagnostic challenges due to the non-specific nature of symptoms. We describe a case of metastatic renal cell clear cell carcinoma presenting with recurrent epistaxis and unilateral nasal obstruction. Immunohistochemistry studies play a crucial role in confirming the diagnosis and ruling out potential differential diagnoses, along with a comprehensive clinical history of the patient.
Human ; Male ; Middle Aged: 45-64 Yrs Old ; Clear Cell Renal Cell Carcinoma ; Carcinoma, Renal Cell ; Metastasis ; Neoplasm Metastasis ; Nasal Cavity ; Epistaxis
4.The association of Fibrosis-4 (FIB 4) index with chronic kidney disease among type 2 diabetes mellitus patients with concomitant non-alcoholic fatty liver disease: A single center cross-sectional study
Antonio O. Pescador jr. ; Gabriel V. Jasul jr. ; Oliver Allan C. Dampil ; Juliet L. Gopez-cervantes ; Luz Margaret A. Escueta
Philippine Journal of Internal Medicine 2025;63(2):138-145
BACKGROUND
Non-alcoholic fatty liver disease (NAFLD) is prevalent in patients with Type 2 Diabetes Mellitus (T2DM) and is associated with chronic kidney disease (CKD). The aim of this cross-sectional study was to determine the association of Fibrosis-4 (FIB-4) index with CKD among T2DM patients with concomitant NAFLD.
METHODOLOGYA single center, analytical cross-sectional study was conducted among 216 T2DM patients with concomitant NAFLD. Clinical data were obtained via retrospective review of medical charts. The outcome of interest was CKD which was based on self-report obtained from medical charts or estimated Glomerular Filtration Rate (eGFR)RESULTS
Higher FIB-4 index was found to be significantly associated with CKD. Patients with FIB-4 index of 1.45-3.25 (moderate risk) and >3.25 (high risk) have about 3 times higher odds of CKD. However, after controlling for the significant confounders, only those who belong to high-risk group was found to be associated with CKD.
CONCLUSIONThis study has demonstrated that FIB4 index > 3.25, an index of liver fibrosis, is significantly associated with development of CKD in T2DM patients with concomitant NAFLD.
Human ; Diabetes Mellitus ; Non-alcoholic Fatty Liver Disease ; Chronic Kidney Diseases ; Renal Insufficiency, Chronic
5.Cellular senescence in renal ischemia-reperfusion injury.
Chinese Medical Journal 2025;138(15):1794-1806
Acute kidney injury (AKI) affects more than 20% of hospitalized patients and is a significant contributor to morbidity and mortality, primarily due to ischemia-reperfusion injury (IRI), which is one of the leading causes of AKI. IRI not only exacerbates the immediate impact of AKI but also facilitates its progression to chronic kidney disease (CKD) and, in cases of preexisting CKD, to end-stage renal disease (ESRD). One of the critical pathological processes associated with IRI-AKI is cellular senescence, characterized by an irreversible arrest in the cell cycle, morphological and chromatin organization changes, altered transcriptional and metabolic profiles, and the development of a hypersecretory phenotype known as the senescence-associated secretory phenotype (SASP). The SASP amplifies senescence signals in surrounding normal cells through senescence-related pathways, contributing to tissue damage, fibrosis, and chronic inflammation. This review provides an overview of the defining features of senescent cells and explores the fundamental mechanisms underlying senescent cell generation following IRI. We elucidate the pivotal roles of cellular senescence in the transition from IRI-AKI to chronic kidney injury. Furthermore, we discuss emerging therapies targeting cellular senescence, including senolytics and senomorphics, which have shown promising results in both preclinical and clinical settings. These therapies position cellular senescence as a crucial target for the treatment of IRI in the kidneys. Additionally, advancements in single-cell sequencing technology and artificial intelligence-assisted drug screening are expected to accelerate the discovery of novel senescent biomarkers and synotherapeutics, paving the way for optimized and personalized therapeutic interventions.
Humans
;
Cellular Senescence/physiology*
;
Reperfusion Injury/pathology*
;
Acute Kidney Injury/pathology*
;
Animals
;
Kidney/metabolism*
;
Senescence-Associated Secretory Phenotype/physiology*
6.Cellular senescence in kidney diseases.
Xiaojie WANG ; Yujia LI ; Qingqing CHU ; Hang LV ; Jing LI ; Fan YI
Chinese Medical Journal 2025;138(18):2234-2242
Cellular senescence, stable cell cycle arrest that can be triggered in normal cells in response to various intrinsic and extrinsic stressors, has been highlighted as one of the most important mechanisms involved in kidney diseases. It not only serves as a fundamental biological process promoting normal organogenesis and successful wound repair but also contributes to organ dysfunction, tissue fibrosis, and the generalized aging phenotype. Moreover, senescent cells exhibit reduced regenerative capacity, which impairs renal function recovery from injuries. Importantly, senescent cells are involved in immune regulation via secreting a diverse array of proinflammatory and profibrotic factors known as senescence-associated secretory phenotype (SASP) with autocrine, paracrine, and endocrine activities. Thus, eliminating detrimental senescent cells or inhibiting SASP production holds great promise for developing innovative therapeutic strategies for kidney diseases. In this review, we summarize the current knowledge of the intricate mechanisms and hallmarks of cellular senescence in kidney diseases and emphasize novel therapeutic targets, including epigenetic regulators, G protein-coupled receptors, and lysosome-related proteins. Particularly, we highlight the recently identified senotherapeutics, which provide new therapeutic strategies for treating kidney diseases.
Humans
;
Cellular Senescence/genetics*
;
Kidney Diseases/pathology*
;
Senescence-Associated Secretory Phenotype/physiology*
;
Animals
;
Epigenesis, Genetic/physiology*
7.Research progress on NCOA4-mediated ferritinophagy and related diseases.
Chen JIA ; Hong-Ji LIN ; Fang CUI ; Rui LU ; Yi-Ting ZHANG ; Zhi-Qin PENG ; Min SHI
Acta Physiologica Sinica 2025;77(1):194-208
Nuclear receptor co-activator 4 (NCOA4) acts as a selective cargo receptor that binds to ferritin, a cytoplasmic iron storage complex. By mediating ferritinophagy, NCOA4 regulates iron metabolism and releases free iron in the body, thus playing a crucial role in a variety of biological processes, including growth, development, and metabolism. Recent studies have shown that NCOA4-mediated ferritinophagy is closely associated with the occurrence and development of iron metabolism-related diseases, such as liver fibrosis, renal cell carcinoma, and neurodegenerative diseases. In addition, a number of clinical drugs have been identified to modulate NCOA4-mediated ferritinophagy, significantly affecting disease progression and treatment efficacy. This paper aims to review the current research progress on the role of NCOA4-mediated ferritinophagy in related diseases, in order to provide new ideas for targeted clinical therapy.
Humans
;
Nuclear Receptor Coactivators/physiology*
;
Ferritins/metabolism*
;
Animals
;
Neurodegenerative Diseases/metabolism*
;
Iron/metabolism*
;
Autophagy/physiology*
;
Liver Cirrhosis/metabolism*
;
Carcinoma, Renal Cell/metabolism*
;
Kidney Neoplasms/physiopathology*
8.Efficacy and mechanism of Cistanches Herba extract in treating reproductive dysfunction in rats with kidney-Yang deficiency based on metabolomics.
Ze-Hui LI ; Pan-Yu XU ; Jia-Shan LI ; Li GUO ; Yuan LI ; Si-Qi LI ; Na LIN ; Ying XU
China Journal of Chinese Materia Medica 2025;50(7):1850-1860
This study investigates the reproductive protective effect and potential mechanism of Cistanches Herba extract(CHE) on a rat model of kidney-Yang deficiency induced by adenine. Rats were randomly divided into five groups: normal, model, low-dose CHE(0.6 g·kg~(-1)·d~(-1)), high-dose CHE(1.2 g·kg~(-1)·d~(-1)), and L-carnitine(100 mg·kg~(-1)·d~(-1)). The rats were administered adenine(200 mg·kg~(-1)·d~(-1)) by gavage for the first 14 days to induce kidney-Yang deficiency, while simultaneously receiving drug treatment. After 14 days, the modeling was discontinued, but drug treatment continued to 49 days. The content of components in CHE was analyzed by high-performance liquid chromatography. The adenine-induced kidney-Yang deficiency model was assessed through symptom characterization and measurement of testosterone(T) levels using an enzyme-linked immunosorbent assay kit. Pathological damage to the testis and epididymis was evaluated based on the wet weight and performing hematoxylin-eosin staining. Sperm density and motility were measured using computer-aided sperm analysis, and sperm viability was assessed using live/dead sperm staining kits, and sperm morphology was evaluated using eosin staining, thereby determining rat sperm quality. Metabolomics was used to analyze changes in serum metabolites, enrich related metabolic pathways, and explore the mechanism of CHE in improving reproductive function damage in rats with kidney-Yang deficiency syndrome. Compared to the normal group, the model group exhibited significant kidney-Yang deficiency symptoms, reduced T levels, decreased testicular and epididymal wet weights, and significant pathological damage to the testis and epididymis. The sperm density, motility, and viability decreased, with an increased rate of sperm abnormalities. In contrast, rats treated with CHE showed marked improvements in kidney-Yang deficiency symptoms, restored T levels, alleviated pathological damage to the testis and epididymis, and improved various sperm parameters. Metabolomics results revealed 286 differential metabolites between the normal and model groups(191 upregulated and 95 downregulated). Seventy-five differential metabolites were identified between the model and low-dose CHE groups(21 upregulated and 54 downregulated). A total of 24 common differential metabolites were identified across the three groups, with 22 of these metabolites exhibiting opposite regulation trends between the two comparison groups. These metabolites were primarily involved in linoleic acid metabolism, ether lipid metabolism, and pantothenic acid and coenzyme A biosynthesis, as well as metabolites including 13-hydroperoxylinoleic acid, lysophosphatidylcholine, and pantethine. CHE can improve kidney-Yang deficiency symptoms in rats, alleviate reproductive organ damage, and enhance sperm quality. The regulation of lipid metabolism may be a potential mechanism through which CHE improves reproductive function in rats with kidney-Yang deficiency. The potential bioactive compounds of CHE include echinacoside, verbascoside, salidroside, betaine, and cistanoside A.
Animals
;
Male
;
Rats
;
Yang Deficiency/physiopathology*
;
Metabolomics
;
Kidney/physiopathology*
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/administration & dosage*
;
Cistanche/chemistry*
;
Kidney Diseases/metabolism*
;
Testis/metabolism*
;
Humans
;
Reproduction/drug effects*
;
Testosterone/blood*
9.Saltwater stir-fried Plantaginis Semen alleviates renal fibrosis by regulating epithelial-mesenchymal transition in renal tubular cells.
Xin-Lei SHEN ; Qing-Ru ZHU ; Wen-Kai YU ; Li ZHOU ; Qi-Yuan SHAN ; Yi-Hang ZHANG ; Yi-Ni BAO ; Gang CAO
China Journal of Chinese Materia Medica 2025;50(5):1195-1208
This study aimed to investigate the effect of saltwater stir-fried Plantaginis Semen(SPS) on renal fibrosis in rats and decipher the underlying mechanism. Thirty-six Sprague-Dawley rats were randomly assigned into control, model, losartan potassium, and low-, medium-, and high-dose(15, 30, and 60 g·kg~(-1), respectively) SPS groups. Rats in other groups except the control group were subjected to unilateral ureteral obstruction(UUO) to induce renal fibrosis, and the modeling and gavage lasted for 14 days. After 14 consecutive days of treatment, the levels of serum creatinine(Scr) and blood urea nitrogen(BUN) in rats of each group were determined by an automatic biochemical analyzer. Hematoxylin-eosin(HE) and Masson staining were used to evaluate pathological changes in the renal tissue. Western blot and immunofluorescence assay were conducted to determine the protein levels of fibronectin(FN), collagen Ⅰ, vimentin, and α-smooth muscle actin(α-SMA) in the renal tissue. The mRNA levels of epithelial-mesenchymal transition(EMT)-associated transcription factors including twist family bHLH transcription factor 1(TWIST1), snail family transcriptional repressor 1(SNAI1), and zinc finger E-box binding homeobox 1(ZEB1), as well as inflammatory cytokines such as interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α), were determined by RT-qPCR. Human renal proximal tubular epithelial(HK2) cells exposed to transforming growth factor-β(TGF-β) for the modeling of renal fibrosis were used to investigate the inhibitory effect of SPS on EMT. Network pharmacology and Western blot were employed to explore the molecular mechanism of SPS in alleviating renal fibrosis. The results showed that SPS significantly reduced Scr and BUN levels and alleviated renal injury and collagen deposition in UUO rats. Moreover, SPS notably down-regulated the protein levels of FN, collagen Ⅰ, vimentin, and α-SMA as well as the mRNA levels of SNAI1, ZEB1, TWIST1, IL-1β, IL-6, and TNF-α in the kidneys of UUO rats and TGF-β-treated HK-2 cells. In addition, compared with Plantaginis Semen without stir-frying with saltwater, SPS showed increased content of specific compounds, which were mainly enriched in the mitogen-activated protein kinase(MAPK) signaling pathway. SPS significantly inhibited the phosphorylation of extracellular signal-regulated kinase(ERK) and p38 MAPK in the kidneys of UUO rats and TGF-β-treated HK2 cells. In conclusion, SPS can alleviate renal fibrosis by attenuating EMT through inhibition of the MAPK signaling pathway.
Animals
;
Epithelial-Mesenchymal Transition/drug effects*
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
Fibrosis/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Kidney Diseases/pathology*
;
Kidney Tubules/pathology*
;
Humans
10.Evidence mapping of clinical research on traditional Chinese medicine in treatment of renal anemia.
Ke-Xin ZHANG ; Xin LI ; Kai-Li CHEN ; Peng-Tao DONG ; Lu-Yao SHI ; Lin-Qi ZHANG
China Journal of Chinese Materia Medica 2025;50(12):3413-3422
Through evidence mapping, this paper systematically summarized the research evidence on the use of traditional Chinese medicine(TCM) in treating renal anemia, displaying the distribution of evidence in this field. A systematic search was conducted across databases, including CNKI, Wanfang, VIP, SinoMed, Springner, PubMed, Engineering Village, and Web of Science, targeting studies published up to June 30, 2024. The research evidence was summarized and displayed through a combination of graphs, tables, and text. A total of 264 interventional studies, 37 observational studies, and 7 systematic reviews were included. The annual publication volumes related to TCM treatment in renal anemia showed an overall upward trend, with most studies involving sample sizes between 60 and 120 participants(224 articles, 74.42%). Intervention measures were categorized into 21 types, with oral TCM decoctions being the most common medicine(171 times, 56.81%). The use of self-made prescriptions was the most common TCM intervention method. The intervention duration was mainly between 8 weeks and 3 months(239 articles, 79.40%). The most frequently reported TCM syndrome was spleen and kidney Qi deficiency. The top 2 outcome indicators were the anemia indicators and renal injury/renal function markers. However, several issues were identified in these studies, such as insufficient attention to the sources, social/geographical information, and temporal continuity of research subjects in observational research. Randomized controlled trials mostly had a high risk of bias, mainly due to issues such as randomization bias, blinding bias, and failure to register research protocols. The methodology quality of systematic reviews was generally low, mainly due to inadequate inclusion of literature, failure to specify funding sources, and lack of pre-registrations. While the report quality of systematic review was acceptable, there were significant gaps in the reporting of protocols, registration, and funds. The results show that these issues affect the quality of research and the reliability of findings on TCM in treating renal anemia, underscoring the need to address them to conduct higher-quality research and provide more reliable medical evidence for TCM in treating renal anemia.
Humans
;
Anemia/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Kidney Diseases/drug therapy*


Result Analysis
Print
Save
E-mail