1.Evaluation of Radioactivity in Therapeutic Radiopharmaceutical Waste
Jung Ju JO ; Su Hyoung LEE ; Beom Hoon KI ; Ho Jin RYU ; Tae Hwan KIM ; Gi Sub KIM ; Sang Kyu LEE ; Dong Wook KIM ; Kum Bae KIM ; Sangrok KIM ; Sang Hyoun CHOI
Progress in Medical Physics 2024;35(4):163-171
Purpose:
This study aims to systematically analyze the radioactive waste generated from treatments using radioactive Iodine-131 (I-131), Lutetium-177 (Lu-177), and Actinium-225 (Ac-225) to facilitate safe waste management practices.
Methods:
I-131 is primarily used in thyroid cancer treatment, while Lu-177 and Ac-225 are used to treat prostate cancer. Radioactive waste generated after these treatments was collected from patients at the Korea Cancer Center Hospital and categorized into clothing, slippers, syringes, and other items. The radioactivity concentration of each item was measured using a calibrated highpurity germanium detector. Using measurements, the self-disposal date of each waste item was calculated according to the permissible disposal levels defined by the Nuclear Safety and Security Commission (NSSC) under domestic nuclear safety regulations.
Results:
For the I-131 radioactive waste, clothing, towels, and tableware exhibited high radioactivity concentrations, with most items exceeding the permissible self-disposal levels.Conversely, the type and quantity of waste generated from Lu-177 and Ac-225 that were intravenously injected were relatively minimal, with certain items below the self-disposal thresholds, enabling immediate disposal. For Ac-225, no permissible self-disposal concentration is specified by the NSSC, unlike other therapeutic nuclides. Hence, additional studies are required to establish clear guidelines.
Conclusions
These findings provide valuable data for optimizing radioactive waste management, potentially reducing disposal time and costs, minimizing radiation exposure, and enhancing hospital safety practices.
2.Evaluation of Radioactivity in Therapeutic Radiopharmaceutical Waste
Jung Ju JO ; Su Hyoung LEE ; Beom Hoon KI ; Ho Jin RYU ; Tae Hwan KIM ; Gi Sub KIM ; Sang Kyu LEE ; Dong Wook KIM ; Kum Bae KIM ; Sangrok KIM ; Sang Hyoun CHOI
Progress in Medical Physics 2024;35(4):163-171
Purpose:
This study aims to systematically analyze the radioactive waste generated from treatments using radioactive Iodine-131 (I-131), Lutetium-177 (Lu-177), and Actinium-225 (Ac-225) to facilitate safe waste management practices.
Methods:
I-131 is primarily used in thyroid cancer treatment, while Lu-177 and Ac-225 are used to treat prostate cancer. Radioactive waste generated after these treatments was collected from patients at the Korea Cancer Center Hospital and categorized into clothing, slippers, syringes, and other items. The radioactivity concentration of each item was measured using a calibrated highpurity germanium detector. Using measurements, the self-disposal date of each waste item was calculated according to the permissible disposal levels defined by the Nuclear Safety and Security Commission (NSSC) under domestic nuclear safety regulations.
Results:
For the I-131 radioactive waste, clothing, towels, and tableware exhibited high radioactivity concentrations, with most items exceeding the permissible self-disposal levels.Conversely, the type and quantity of waste generated from Lu-177 and Ac-225 that were intravenously injected were relatively minimal, with certain items below the self-disposal thresholds, enabling immediate disposal. For Ac-225, no permissible self-disposal concentration is specified by the NSSC, unlike other therapeutic nuclides. Hence, additional studies are required to establish clear guidelines.
Conclusions
These findings provide valuable data for optimizing radioactive waste management, potentially reducing disposal time and costs, minimizing radiation exposure, and enhancing hospital safety practices.
3.Evaluation of Radioactivity in Therapeutic Radiopharmaceutical Waste
Jung Ju JO ; Su Hyoung LEE ; Beom Hoon KI ; Ho Jin RYU ; Tae Hwan KIM ; Gi Sub KIM ; Sang Kyu LEE ; Dong Wook KIM ; Kum Bae KIM ; Sangrok KIM ; Sang Hyoun CHOI
Progress in Medical Physics 2024;35(4):163-171
Purpose:
This study aims to systematically analyze the radioactive waste generated from treatments using radioactive Iodine-131 (I-131), Lutetium-177 (Lu-177), and Actinium-225 (Ac-225) to facilitate safe waste management practices.
Methods:
I-131 is primarily used in thyroid cancer treatment, while Lu-177 and Ac-225 are used to treat prostate cancer. Radioactive waste generated after these treatments was collected from patients at the Korea Cancer Center Hospital and categorized into clothing, slippers, syringes, and other items. The radioactivity concentration of each item was measured using a calibrated highpurity germanium detector. Using measurements, the self-disposal date of each waste item was calculated according to the permissible disposal levels defined by the Nuclear Safety and Security Commission (NSSC) under domestic nuclear safety regulations.
Results:
For the I-131 radioactive waste, clothing, towels, and tableware exhibited high radioactivity concentrations, with most items exceeding the permissible self-disposal levels.Conversely, the type and quantity of waste generated from Lu-177 and Ac-225 that were intravenously injected were relatively minimal, with certain items below the self-disposal thresholds, enabling immediate disposal. For Ac-225, no permissible self-disposal concentration is specified by the NSSC, unlike other therapeutic nuclides. Hence, additional studies are required to establish clear guidelines.
Conclusions
These findings provide valuable data for optimizing radioactive waste management, potentially reducing disposal time and costs, minimizing radiation exposure, and enhancing hospital safety practices.
4.Evaluation of Radioactivity in Therapeutic Radiopharmaceutical Waste
Jung Ju JO ; Su Hyoung LEE ; Beom Hoon KI ; Ho Jin RYU ; Tae Hwan KIM ; Gi Sub KIM ; Sang Kyu LEE ; Dong Wook KIM ; Kum Bae KIM ; Sangrok KIM ; Sang Hyoun CHOI
Progress in Medical Physics 2024;35(4):163-171
Purpose:
This study aims to systematically analyze the radioactive waste generated from treatments using radioactive Iodine-131 (I-131), Lutetium-177 (Lu-177), and Actinium-225 (Ac-225) to facilitate safe waste management practices.
Methods:
I-131 is primarily used in thyroid cancer treatment, while Lu-177 and Ac-225 are used to treat prostate cancer. Radioactive waste generated after these treatments was collected from patients at the Korea Cancer Center Hospital and categorized into clothing, slippers, syringes, and other items. The radioactivity concentration of each item was measured using a calibrated highpurity germanium detector. Using measurements, the self-disposal date of each waste item was calculated according to the permissible disposal levels defined by the Nuclear Safety and Security Commission (NSSC) under domestic nuclear safety regulations.
Results:
For the I-131 radioactive waste, clothing, towels, and tableware exhibited high radioactivity concentrations, with most items exceeding the permissible self-disposal levels.Conversely, the type and quantity of waste generated from Lu-177 and Ac-225 that were intravenously injected were relatively minimal, with certain items below the self-disposal thresholds, enabling immediate disposal. For Ac-225, no permissible self-disposal concentration is specified by the NSSC, unlike other therapeutic nuclides. Hence, additional studies are required to establish clear guidelines.
Conclusions
These findings provide valuable data for optimizing radioactive waste management, potentially reducing disposal time and costs, minimizing radiation exposure, and enhancing hospital safety practices.
5.Evaluation of Radioactivity in Therapeutic Radiopharmaceutical Waste
Jung Ju JO ; Su Hyoung LEE ; Beom Hoon KI ; Ho Jin RYU ; Tae Hwan KIM ; Gi Sub KIM ; Sang Kyu LEE ; Dong Wook KIM ; Kum Bae KIM ; Sangrok KIM ; Sang Hyoun CHOI
Progress in Medical Physics 2024;35(4):163-171
Purpose:
This study aims to systematically analyze the radioactive waste generated from treatments using radioactive Iodine-131 (I-131), Lutetium-177 (Lu-177), and Actinium-225 (Ac-225) to facilitate safe waste management practices.
Methods:
I-131 is primarily used in thyroid cancer treatment, while Lu-177 and Ac-225 are used to treat prostate cancer. Radioactive waste generated after these treatments was collected from patients at the Korea Cancer Center Hospital and categorized into clothing, slippers, syringes, and other items. The radioactivity concentration of each item was measured using a calibrated highpurity germanium detector. Using measurements, the self-disposal date of each waste item was calculated according to the permissible disposal levels defined by the Nuclear Safety and Security Commission (NSSC) under domestic nuclear safety regulations.
Results:
For the I-131 radioactive waste, clothing, towels, and tableware exhibited high radioactivity concentrations, with most items exceeding the permissible self-disposal levels.Conversely, the type and quantity of waste generated from Lu-177 and Ac-225 that were intravenously injected were relatively minimal, with certain items below the self-disposal thresholds, enabling immediate disposal. For Ac-225, no permissible self-disposal concentration is specified by the NSSC, unlike other therapeutic nuclides. Hence, additional studies are required to establish clear guidelines.
Conclusions
These findings provide valuable data for optimizing radioactive waste management, potentially reducing disposal time and costs, minimizing radiation exposure, and enhancing hospital safety practices.
6.Colon cancer: the 2023 Korean clinical practice guidelines for diagnosis and treatment
Hyo Seon RYU ; Hyun Jung KIM ; Woong Bae JI ; Byung Chang KIM ; Ji Hun KIM ; Sung Kyung MOON ; Sung Il KANG ; Han Deok KWAK ; Eun Sun KIM ; Chang Hyun KIM ; Tae Hyung KIM ; Gyoung Tae NOH ; Byung-Soo PARK ; Hyeung-Min PARK ; Jeong Mo BAE ; Jung Hoon BAE ; Ni Eun SEO ; Chang Hoon SONG ; Mi Sun AHN ; Jae Seon EO ; Young Chul YOON ; Joon-Kee YOON ; Kyung Ha LEE ; Kyung Hee LEE ; Kil-Yong LEE ; Myung Su LEE ; Sung Hak LEE ; Jong Min LEE ; Ji Eun LEE ; Han Hee LEE ; Myong Hoon IHN ; Je-Ho JANG ; Sun Kyung JEON ; Kum Ju CHAE ; Jin-Ho CHOI ; Dae Hee PYO ; Gi Won HA ; Kyung Su HAN ; Young Ki HONG ; Chang Won HONG ; Jung-Myun KWAK ;
Annals of Coloproctology 2024;40(2):89-113
Colorectal cancer is the third most common cancer in Korea and the third leading cause of death from cancer. Treatment outcomes for colon cancer are steadily improving due to national health screening programs with advances in diagnostic methods, surgical techniques, and therapeutic agents.. The Korea Colon Cancer Multidisciplinary (KCCM) Committee intends to provide professionals who treat colon cancer with the most up-to-date, evidence-based practice guidelines to improve outcomes and help them make decisions that reflect their patients’ values and preferences. These guidelines have been established by consensus reached by the KCCM Guideline Committee based on a systematic literature review and evidence synthesis and by considering the national health insurance system in real clinical practice settings. Each recommendation is presented with a recommendation strength and level of evidence based on the consensus of the committee.
7.Gut microbiome and metabolome signatures in liver cirrhosis-related complications
Satya Priya SHARMA ; Haripriya GUPTA ; Goo-Hyun KWON ; Sang Yoon LEE ; Seol Hee SONG ; Jeoung Su KIM ; Jeong Ha PARK ; Min Ju KIM ; Dong-Hoon YANG ; Hyunjoon PARK ; Sung-Min WON ; Jin-Ju JEONG ; Ki-Kwang OH ; Jung A EOM ; Kyeong Jin LEE ; Sang Jun YOON ; Young Lim HAM ; Gwang Ho BAIK ; Dong Joon KIM ; Ki Tae SUK
Clinical and Molecular Hepatology 2024;30(4):845-862
Background/Aims:
Shifts in the gut microbiota and metabolites are interrelated with liver cirrhosis progression and complications. However, causal relationships have not been evaluated comprehensively. Here, we identified complication-dependent gut microbiota and metabolic signatures in patients with liver cirrhosis.
Methods:
Microbiome taxonomic profiling was performed on 194 stool samples (52 controls and 142 cirrhosis patients) via V3-V4 16S rRNA sequencing. Next, 51 samples (17 controls and 34 cirrhosis patients) were selected for fecal metabolite profiling via gas chromatography mass spectrometry and liquid chromatography coupled to timeof-flight mass spectrometry. Correlation analyses were performed targeting the gut-microbiota, metabolites, clinical parameters, and presence of complications (varices, ascites, peritonitis, encephalopathy, hepatorenal syndrome, hepatocellular carcinoma, and deceased).
Results:
Veillonella bacteria, Ruminococcus gnavus, and Streptococcus pneumoniae are cirrhosis-related microbiotas compared with control group. Bacteroides ovatus, Clostridium symbiosum, Emergencia timonensis, Fusobacterium varium, and Hungatella_uc were associated with complications in the cirrhosis group. The areas under the receiver operating characteristic curve (AUROCs) for the diagnosis of cirrhosis, encephalopathy, hepatorenal syndrome, and deceased were 0.863, 0.733, 0.71, and 0.69, respectively. The AUROCs of mixed microbial species for the diagnosis of cirrhosis and complication were 0.808 and 0.847, respectively. According to the metabolic profile, 5 increased fecal metabolites in patients with cirrhosis were biomarkers (AUROC >0.880) for the diagnosis of cirrhosis and complications. Clinical markers were significantly correlated with the gut microbiota and metabolites.
Conclusions
Cirrhosis-dependent gut microbiota and metabolites present unique signatures that can be used as noninvasive biomarkers for the diagnosis of cirrhosis and its complications.
8.Prevalence and Associated Factors of Depression and Anxiety Among Healthcare Workers During the Coronavirus Disease 2019 Pandemic:A Nationwide Study in Korea
Shinwon LEE ; Soyoon HWANG ; Ki Tae KWON ; EunKyung NAM ; Un Sun CHUNG ; Shin-Woo KIM ; Hyun-Ha CHANG ; Yoonjung KIM ; Sohyun BAE ; Ji-Yeon SHIN ; Sang-geun BAE ; Hyun Wook RYOO ; Juhwan JEONG ; NamHee OH ; So Hee LEE ; Yeonjae KIM ; Chang Kyung KANG ; Hye Yoon PARK ; Jiho PARK ; Se Yoon PARK ; Bongyoung KIM ; Hae Suk CHEONG ; Ji Woong SON ; Su Jin LIM ; Seongcheol YUN ; Won Sup OH ; Kyung-Hwa PARK ; Ju-Yeon LEE ; Sang Taek HEO ; Ji-yeon LEE
Journal of Korean Medical Science 2024;39(13):e120-
Background:
A healthcare system’s collapse due to a pandemic, such as the coronavirus disease 2019 (COVID-19), can expose healthcare workers (HCWs) to various mental health problems. This study aimed to investigate the impact of the COVID-19 pandemic on the depression and anxiety of HCWs.
Methods:
A nationwide questionnaire-based survey was conducted on HCWs who worked in healthcare facilities and public health centers in Korea in December 2020. Patient Health Questionnaire-9 (PHQ-9) and Generalized Anxiety Disorder-7 (GAD-7) were used to measure depression and anxiety. To investigate factors associated with depression and anxiety, stepwise multiple logistic regression analysis was performed.
Results:
A total of 1,425 participating HCWs were included. The mean depression score (PHQ-9) of HCWs before and after COVID-19 increased from 2.37 to 5.39, and the mean anxiety score (GAD-7) increased from 1.41 to 3.41. The proportion of HCWs with moderate to severe depression (PHQ-9 ≥ 10) increased from 3.8% before COVID-19 to 19.5% after COVID-19, whereas that of HCWs with moderate to severe anxiety (GAD-7 ≥ 10) increased from 2.0% to 10.1%. In our study, insomnia, chronic fatigue symptoms and physical symptoms after COVID-19, anxiety score (GAD-7) after COVID-19, living alone, and exhaustion were positively correlated with depression. Furthermore, post-traumatic stress symptoms, stress score (Global Assessment of Recent Stress), depression score (PHQ-9) after COVID-19, and exhaustion were positively correlated with anxiety.
Conclusion
In Korea, during the COVID-19 pandemic, HCWs commonly suffered from mental health problems, including depression and anxiety. Regularly checking the physical and mental health problems of HCWs during the COVID-19 pandemic is crucial, and social support and strategy are needed to reduce the heavy workload and psychological distress of HCWs.
9.Tranexamic acid - a promising hemostatic agent with limitations: a narrative review
Dong Joon KIM ; Su Yeon CHO ; Ki Tae JUNG
Korean Journal of Anesthesiology 2024;77(4):411-422
Tranexamic acid (TXA) is a synthetic antifibrinolytic agent that has been used for several decades to reduce blood loss during surgery and after trauma. TXA was traditionally used to reduce bleeding in various clinical settings such as menorrhagia, hemophilia, or other bleeding disorder. Numerous studies have demonstrated the efficacy of TXA in reducing blood loss and the need for transfusions. Interest in the potential applications of TXA beyond its traditional use has been growing recently, with studies investigating the use of TXA in postpartum hemorrhage, cardiac surgery, trauma, neurosurgery, and orthopedic surgery. Despite its widespread use and expanding indications, data regarding the safe and appropriate use of TXA is lacking. Recent clinical trials have found various potential risks and limitations in the long-term benefits of TXA. This narrative review summarizes the clinical applications and limitations of TXA.
10.The Impact of the COVID-19 Outbreak on Emergency Medical Service:An Analysis of Patient Transportations and Time Intervals
Yong Joo PARK ; Kyoung Jun SONG ; Ki Jeong HONG ; Jeong Ho PARK ; Tae Han KIM ; Young Su KIM ; Seung Hyo LEE
Journal of Korean Medical Science 2023;38(42):e317-
Background:
This study aimed to investigate the impact of the coronavirus disease 2019 (COVID-19) outbreak on the Emergency Medical Service (EMS) system in South Korea. The study focused on the differences in EMS time intervals following the COVID-19 outbreak, particularly for patients with fever.
Methods:
A retrospective analysis of EMS patient transportation data from 2017 to 2022 was conducted using the national EMS database.
Results:
Starting from the year 2020, coinciding with the COVID-19 outbreak, all EMS time intervals experienced an increase. For the years 2017 to 2022, the mean response time interval values were 8.6, 8.6, 8.6, 10.2, 12.8, and 11.4 minutes, and the mean scene time interval values were 7.1, 7.2, 7.4, 9.0, 9.8, and 10.9 minutes. The mean transport time interval (TTI) values were 12.1, 12.3, 12.4, 14.2, 16.9, and 16.2 minutes, and the mean turnaround time interval values were 27.6, 27.9, 28.7, 35.2, 42.0, and 43.1 minutes. Fever (≥ 37.5°C) patients experienced more pronounced prolongations in EMS time intervals compared to non-fever patients and had a higher probability of being non-transported. The mean differences in TTI between fever and non-fever patients were 0.8, 0.8, 0.8, 4.3, 4.8, and 3.2 minutes, respectively, from 2017 to 2022. Furthermore, the odds ratios for fever patients being transported to the emergency department were 2.7, 2.9, 2.8, 1.1, 0.8, and 0.7, respectively, from 2017 to 2022.
Conclusion
The study findings highlight the significant impact of the COVID-19 outbreak on the EMS system and emphasize the importance of ongoing monitoring to evaluate the burden on the EMS system.

Result Analysis
Print
Save
E-mail