1.Hydroxysafflor Yellow A Promotes HaCaT Cell Proliferation and Migration by Regulating HBEGF/EGFR and PI3K/AKT Pathways and Circ_0084443.
Yue ZHANG ; Yan-Wei XIAO ; Jing-Xin MA ; Ao-Xue WANG
Chinese journal of integrative medicine 2024;30(3):213-221
OBJECTIVE:
To investigate the effect and possible mechanism of hydroxysafflor yellow A (HSYA) on human immortalized keratinocyte cell proliferation and migration.
METHODS:
HaCaT cells were treated with HSYA. Cell proliferation was detected by the cell counting kit-8 assay, and cell migration was measured using wound healing assay and Transwell migration assay. The mRNA and protein expression levels of heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF), EGF receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF-1α) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Circ_0084443-overexpressing HaCaT cells and empty plasmid HaCaT cells were constructed using the lentiviral stable transfection and treated with HSYA. The expression of circ_0084443 was detected by qRT-PCR.
RESULTS:
HSYA (800 µmol/L) significantly promoted HaCaT cell proliferation and migration (P<0.05 or P<0.01). It also increased the mRNA and protein expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and increased the phosphorylation levels of PI3K and AKT (P<0.05 or P<0.01). Furthermore, HSYA promoted HaCaT cell proliferation and migration via the HBEGF/EGFR and PI3K/AKT/mTOR signaling pathways (P<0.01). Circ_0084443 attenuated the mRNA expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α (P<0.05). HSYA inhibited the circ_0084443 expression, further antagonized the inhibition of circ_0084443 on HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and promoted the proliferation of circ_0084443-overexpressing HaCaT cells (P<0.05 or P<0.01). However, HSYA could not influence the inhibitory effect of circ_0084443 on HaCaT cell migration (P>0.05).
CONCLUSION
HSYA played an accelerative role in HaCaT cell proliferation and migration, which may be attributable to activating HBEGF/EGFR and PI3K/AKT signaling pathways, and had a particular inhibitory effect on the keratinocyte negative regulator circ_0084443.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinase
;
Phosphatidylinositol 3-Kinases/metabolism*
;
ErbB Receptors/genetics*
;
TOR Serine-Threonine Kinases/metabolism*
;
Cell Proliferation
;
RNA, Messenger/genetics*
;
Cell Movement
;
Cell Line, Tumor
;
Chalcone/analogs & derivatives*
;
Quinones
2.Site-directed mutagenesis enhances the activity of benzylidene acetone synthase of polyketide synthase from Polygonum cuspidatum.
Zhimin HE ; Wenrui MA ; Liping YU ; Heshu LÜ ; Mingfeng YANG
Chinese Journal of Biotechnology 2023;39(7):2806-2817
Polygonum cuspidatum polyketide synthase 1 (PcPKS1) has the catalytic activity of chalcone synthase (CHS) and benzylidene acetone synthase (BAS), which can catalyze the production of polyketides naringenin chalcone and benzylidene acetone, and then catalyze the synthesis of flavonoids or benzylidene acetone. In this study, three amino acid sites (Thr133, Ser134, Ser33) that may affect the function of PcPKS1 were identified by analyzing the sequences of PcPKS1, the BAS from Rheum palmatum and the CHS from Arabidopsis thaliana, as well as the conformation of the catalytic site of the enzyme. Molecular modification of PcPKS1 was carried out by site-directed mutagenesis, and two mutants were successfully obtained. The in vitro enzymatic reactions were carried out, and the differences in activity were detected by high performance liquid chromatography (HPLC). Finally, mutants T133LS134A and S339V with bifunctional activity were obtained. In addition to bifunctional activities of BAS and CHS, the modified PcPKS1 had much higher BAS activity than that of the wild type PcPKS1 under the conditions of pH 7.0 and pH 9.0, respectively. It provides a theoretical basis for future use of PcPKS1 in genetic engineering to regulate the biosynthesis of flavonoids and raspberry ketones.
Amino Acid Sequence
;
Fallopia japonica/metabolism*
;
Polyketide Synthases/chemistry*
;
Acetone
;
Mutagenesis, Site-Directed
;
Flavonoids/metabolism*
;
Acyltransferases/metabolism*
3.A new dihydrochalcone from Humulus scandens.
Yuan-Ning WU ; Biao SUN ; Jun-Ya WANG ; De-Zhi WANG ; Min SONG ; Xiao-Qi ZHANG
China Journal of Chinese Materia Medica 2023;48(7):1885-1891
To study the chemical constituents from the stems and leaves of Humulus scandens, this study isolated thirteen compounds by different chromatographic methods including silica gel column, ODS, Sephadex LH-20 and preparative HPLC. Based on comprehensive analysis, the chemical structures were elucidated and identified as citrunohin A(1), chrysosplenetin(2), casticin(3), neoechinulin A(4), ethyl 1H-indole-3-carboxylate(5), 3-hydroxyacetyl-indole(6),(1H-indol-3-yl) oxoacetamide(7), inonotusic acid(8), arteannuin B(9), xanthotoxol(10), α-tocopherol quinone(11), eicosanyl-trans-p-coumarate(12), and 9-oxo-(10E,12E)-octadecadienoic acid(13). Among them, compound 1 was a new dihydrochalcone, and the other compounds were obtained from H. scandens for the first time.
Humulus
;
Chalcones
;
Indoles
;
Drugs, Chinese Herbal/chemistry*
4.Estimation of the consumption level of four drugs in Beijing using wastewater-based epidemiology.
Jiawulan ZUNONG ; Mu Shui SHU ; Meng Long LI ; Yeerlin ASIHAER ; Meng Ying GUAN ; Yi Fei HU
Chinese Journal of Preventive Medicine 2023;57(5):674-678
Objective: To estimate the consumption level of four drugs in Beijing using wastewater-based epidemiology (WBE). Methods: The primary sludge from one large wastewater treatment plants (WWTPs) was collected in Beijing from July 2020 to February 2021. The concentrations of codeine, methadone, ketamine and morphine in the sludge were detected through solid-phase extraction-liquid chromatography-tandem mass spectrometry. The consumption, prevalence and number of users of four drugs were estimated by using the WBE approach. Results: Among 416 sludge samples, codeine had the highest detection rate (82.93%, n=345) with a concentration [M (Q1, Q3)] of 0.40 (0.22-0.8) ng·g-1, and morphine had the lowest detection rate (28.37%,n=118) with a concentration [M (Q1, Q3)] of 0.13 (0.09, 0.17) ng·g-1. There was no significant difference in the consumption of the four drugs on working days and weekends (all P values>0.05). Drug consumption was significantly higher in winter than that in summer and autumn (all P values <0.05). The consumption [M (Q1, Q3)] of codeine, methadone, ketamine and morphine in winter was 24.9 (15.58, 38.6), 9.39 (4.57, 26.72), 9.84 (5.18, 19.45) and 5.67 (3.57, 13.77) μg·inhabitant-1·day-1, respectively. For these drugs, there was an upward trend in the average drug consumption during summer, autumn and winter (the Z values of the trend test were 3.23, 3.16, 2.19, and 3.32, respectively and all P values<0.05). The prevalence [M (Q1, Q3)] of codeine, methadone, ketamine and morphine were 0.0056% (0.003 4%, 0.009 2%), 0.0148% (0.009 6%, 0.026 7%),0.0333% (0.0210%, 0.0710%) and 0.0072% (0.003 8%, 0.011 7%), respectively. The estimated number of drug users [M (Q1, Q3)] was 918 (549, 1 511), 2 429 (1 578, 4 383), 5 451 (3 444, 11 642) and 1 173 (626, 1 925),respectively. Conclusion: Codeine, methadone, ketamine and morphine have been detected in the sludge of WWTPs in Beijing, and the consumption level of these drugs varies in different seasons.
Humans
;
Beijing
;
Wastewater-Based Epidemiological Monitoring
;
Sewage/analysis*
;
Wastewater
;
Ketamine/analysis*
;
Codeine/analysis*
;
Methadone/analysis*
;
Water Pollutants, Chemical/analysis*
5.Geranylated or prenylated flavonoids from Cajanus volubilis.
Li RAO ; Yu SU ; Qian HE ; Jia YE ; Yu LIU ; Yue FAN ; Feng HU ; Zhen ZHOU ; Lishe GAN ; Yonghui ZHANG ; Chuanrui ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(4):292-297
Five new flavonoid derivatives, cajavolubones A-E (1-5), along with six known analogues (6-11) were isolated from Cajanus volubilis, and their structures were elucidated by spectroscopic analysis and quantum chemical calculations. Cajavolubones A and B (1 and 2) were identified as two geranylated chalcones. Cajavolubone C (3) was a prenylated flavone, while cajavolubones D and E (4 and 5) were two prenylated isoflavanones. Compounds 3, 8, 9 and 11 displayed cytotoxicity against HCT-116 cancer cell line.
Flavonoids/chemistry*
;
Cajanus
;
Molecular Structure
;
Chalcones/chemistry*
6.Isoliquiritigenin induces HMOX1 and GPX4-mediated ferroptosis in gallbladder cancer cells.
Zeyu WANG ; Weijian LI ; Xue WANG ; Qin ZHU ; Liguo LIU ; Shimei QIU ; Lu ZOU ; Ke LIU ; Guoqiang LI ; Huijie MIAO ; Yang YANG ; Chengkai JIANG ; Yong LIU ; Rong SHAO ; Xu'an WANG ; Yingbin LIU
Chinese Medical Journal 2023;136(18):2210-2220
BACKGROUND:
Gallbladder cancer (GBC) is the most common malignant tumor of biliary tract. Isoliquiritigenin (ISL) is a natural compound with chalcone structure extracted from the roots of licorice and other plants. Relevant studies have shown that ISL has a strong anti-tumor ability in various types of tumors. However, the research of ISL against GBC has not been reported, which needs to be further investigated.
METHODS:
The effects of ISL against GBC cells in vitro and in vivo were characterized by cytotoxicity test, RNA-sequencing, quantitative real-time polymerase chain reaction, reactive oxygen species (ROS) detection, lipid peroxidation detection, ferrous ion detection, glutathione disulphide/glutathione (GSSG/GSH) detection, lentivirus transfection, nude mice tumorigenesis experiment and immunohistochemistry.
RESULTS:
ISL significantly inhibited the proliferation of GBC cells in vitro . The results of transcriptome sequencing and bioinformatics analysis showed that ferroptosis was the main pathway of ISL inhibiting the proliferation of GBC, and HMOX1 and GPX4 were the key molecules of ISL-induced ferroptosis. Knockdown of HMOX1 or overexpression of GPX4 can reduce the sensitivity of GBC cells to ISL-induced ferroptosis and significantly restore the viability of GBC cells. Moreover, ISL significantly reversed the iron content, ROS level, lipid peroxidation level and GSSG/GSH ratio of GBC cells. Finally, ISL significantly inhibited the growth of GBC in vivo and regulated the ferroptosis of GBC by mediating HMOX1 and GPX4 .
CONCLUSION
ISL induced ferroptosis in GBC mainly by activating p62-Keap1-Nrf2-HMOX1 signaling pathway and down-regulating GPX4 in vitro and in vivo . This evidence may provide a new direction for the treatment of GBC.
Animals
;
Mice
;
Carcinoma in Situ
;
Chalcones/pharmacology*
;
Ferroptosis
;
Gallbladder Neoplasms/genetics*
;
Glutathione Disulfide
;
Kelch-Like ECH-Associated Protein 1
;
Mice, Nude
;
NF-E2-Related Factor 2/genetics*
;
Reactive Oxygen Species
;
Humans
7.Two cases of airway dysfunction related to diacetyl exposure.
Bo Hua HU ; Xiao Ping HUANG ; Xiao Pin YU ; Li Na CHEN ; Lu Yan DAI ; Guo Chuan MAO
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(3):222-224
Occupational exposure to diacetyl can lead to bronchiolitis obliterans. In this paper, two patients with severe obstructive ventilation disorder who were exposed to diacetyl at a fragrance and flavours factory were analyzed. The clinical manifestations were cough and shortness of breath. One of them showed Mosaic shadows and uneven perfusion in both lungs on CT, while the other was normal. Field investigation found that 4 of the 8 workers in the factory were found to have obstructive ventilation disorder, and 2 had small airway dysfunction. This paper summarizes the diagnostic process of patients in order to improve the understanding of airway dysfunction caused by occupational exposure to diacetyl and promote the development of relevant standards.
Humans
;
Diacetyl/adverse effects*
;
Occupational Diseases/diagnosis*
;
Occupational Exposure/adverse effects*
;
Lung
;
Bronchiolitis Obliterans/diagnosis*
8.An examination of the carbon metabolic pathways in Acinetobacter sp. TAC-1 in the context of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) utilization.
Huan LIU ; Wang CHEN ; Senwen TAN ; Siyu LIANG ; Chenxi YANG ; Qian ZHANG
Chinese Journal of Biotechnology 2023;39(11):4663-4681
The present study aimed to unravel the carbon metabolism pathway of Acinetobacter sp. TAC-1, a heterotrophic nitrification-aerobic denitrification (HN-AD) strain that utilizes poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as a carbon source. Sodium acetate was employed as a control to assess the gene expression of carbon metabolic pathways in the TAC-1 strain. The results of genome sequencing demonstrated that the TAC-1 strain possessed various genes encoding carbon metabolic enzymes, such as gltA, icd, sucAB, acs, and pckA. KEGG pathway database analysis further verified the presence of carbon metabolism pathways, including the glycolytic pathway (EMP), pentose phosphate pathway (PPP), glyoxylate cycle (GAC), and tricarboxylic acid (TCA) cycle in the TAC-1 strain. The differential expression of metabolites derived from distinct carbon sources provided further evidence that the carbon metabolism pathway of TAC-1 utilizing PHBV follows the sequential process of PHBV (via the PPP pathway)→gluconate (via the EMP pathway)→acetyl-CoA (entering the TCA cycle)→CO2+H2O (generating electron donors and releasing energy). This study is expected to furnish a theoretical foundation for the advancement and implementation of novel denitrification processes based on HN-AD and solid carbon sources.
3-Hydroxybutyric Acid
;
Carbon/metabolism*
;
Polyesters
;
Hydroxybutyrates
;
Metabolic Networks and Pathways
9.Study on biomarkers of acteoside in treating puromycin aminonucleoside nephropathy in young rats based on non-targeted urine metabolomics technology.
Meng-Xiao WANG ; Ke-Ke LUO ; Wen-Ya GAO ; Meng-Yao TIAN ; Hai-Yu ZHAO ; Nan SI ; Bao-Lin BIAN ; Xiao-Lu WEI ; Hong-Jie WANG ; Yan-Yan ZHOU
China Journal of Chinese Materia Medica 2023;48(21):5898-5907
This study aims to reveal the endogenous metabolic characteristics of acteoside in the young rat model of purinomycin aminonucleoside nephropathy(PAN) by non-targeted urine metabolomics and decipher the potential mechanism of action. Biochemical indicators in the urine of rats from each group were determined by an automatic biochemical analyzer. The potential biomarkers and related core metabolic pathways were identified by ultra-high performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry(UHPLC-LTQ-Orbitrap MS) combined with principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). MetaboAnalyst 5.0 was used to establish the receiver operating characteristic(ROC) curve for evaluating the clinical diagnostic performance of core metabolites. The results showed that acteoside significantly decreased urinary protein-to-creatinine ratio in PAN young rats. A total of 17 differential metabolites were screened out by non-targeted urine metabolomics in PAN young rats and they were involved in phenylalanine metabolism and phenylalanine, tyrosine and tryptophan biosynthesis. Thirtten differential metabolites were screened by acteoside intervention in PAN young rats, and they were involved in phenylalanine metabolism and arginine and proline metabolism. Among them, leucylproline and acetophenone were the differential metabolites that were significantly recovered after acteoside treatment. These pathways suggest that acteoside treats PAN in young rats by regulating amino acid metabolism. The area under the curve of two core biomarkers, leucylproline and acetophenone, were both greater than 0.9. In summary, acteoside may restore amino acid metabolism by regulating endogenous differential metabolites in PAN young rats, which will help to clarify the mechanism of acteoside in treating chronic glomerulonephritis in children. The characteristic biomarkers screened out have a high diagnostic value for evaluating the treatment of chronic glomerulonephritis in children with acteoside.
Humans
;
Child
;
Rats
;
Animals
;
Puromycin Aminonucleoside
;
Metabolomics/methods*
;
Biomarkers/urine*
;
Chromatography, High Pressure Liquid/methods*
;
Acetophenones
;
Glomerulonephritis
;
Phenylalanine
;
Amino Acids
10.Chemical and nutrient differences between medicinal material, residues, and residue compost of Moutan Cortex.
Rong-Qing ZHU ; Chun-Fang TIAN ; Xiao-Yan LAN ; Zi-Han WANG ; Xiang LI ; Li ZHOU ; Mei-Lan CHEN ; Li-Ping KANG
China Journal of Chinese Materia Medica 2023;48(23):6361-6370
Moutan Cortex(MC) residues produced after the extraction of MC can be re-extracted for active components and used to produce organic fertilizer and animal feed. However, they are currently disposed as domestic waste, which pollutes the environment. This study analyzed the chemical composition of the medicinal material, residues, and residue compost of MC by UPLC-UV-Q-TOF-MS. Furthermore, the nutrient composition of MC residues and the residue compost was analyzed. The results showed that:(1)MC residues had lower content of chemicals than the medicinal material, and content of paeonol, gallic acid, and galloylglucose in MC residues were about 1/3 of that in the medicinal material. The content of chemicals were further reduced after residue composting, and the quantitative compounds were all below the limits of detection.(2)Compared with MC residues, the residue compost showed the total nitrogen, total phosphorus, total potassium, and organic matter content increasing by 122.67%, 31.32%, 120.39%, and 32.06%, respectively. Therefore, we concluded that the MC residues can be used to re-extract active compounds such as paeonol, gallic acid, and galloylglucose. The MC residue compost is a high-quality organic fertilizer containing minimal content of chemicals and can be widely used in the cultivation of Chinese medicinal herbs.
Animals
;
Composting
;
Fertilizers
;
Soil/chemistry*
;
Hydrolyzable Tannins
;
Nutrients
;
Acetophenones
;
Drugs, Chinese Herbal
;
Paeonia

Result Analysis
Print
Save
E-mail