1.The addition of 5-aminolevulinic acid to HBSS protects testis grafts during hypothermic transportation: a novel preservation strategy.
Meng-Hui MA ; Pei-Gen CHEN ; Jun-Xian HE ; Hai-Cheng CHEN ; Zhen-Han XU ; Lin-Yan LV ; Yan-Qing LI ; Xiao-Yan LIANG ; Gui-Hua LIU
Asian Journal of Andrology 2025;27(4):454-463
The aim of this investigation was to determine the optimal storage medium for testicular hypothermic transportation and identify the ideal concentration for the application of the protective agent 5-aminolevulinic acid (5-ALA). Furthermore, this study aimed to explore the underlying mechanism of the protective effects of 5-ALA. First, we collected and stored mouse testicular fragments in different media, including Hank's balanced salt solution (HBSS; n = 5), Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F12; n = 5), and alpha-minimum essential medium (αMEM; n = 5). Storage of testicular tissue in HBSS preserved the integrity of testicular morphology better than that in the DMEM/F12 group ( P < 0.05) and the αMEM group ( P < 0.01). Testicular fragments were subsequently placed in HBSS with various concentrations of 5-ALA (0 [control], 1 mmol l -1 , 2 mmol l -1 , and 5 mmol l -1 ) to determine the most effective concentration of 5-ALA. The 2 mmol l -1 5-ALA group ( n = 3) presented the highest positive rate of spermatogonial stem cells compared with those in the control, 1 mmol l -1 , and 5 mmol l -1 5-ALA groups. Finally, the tissue fragments were preserved in HBSS with control ( n = 3) and 2 mmol l -1 5-ALA ( n = 3) under low-temperature conditions. A comparative analysis was performed against fresh testes ( n = 3) to elucidate the underlying mechanism of 5-ALA. Gene set enrichment analysis (GSEA) for WikiPathways revealed that the p38 mitogen-activated protein kinase (MAPK) signaling pathway was downregulated in the 2 mmol l -1 5-ALA group compared with that in the control group (normalized enrichment score [NES] = -1.57, false discovery rate [FDR] = 0.229, and P = 0.019). In conclusion, these data suggest that using 2 mmol l -1 5-ALA in HBSS effectively protected the viability of spermatogonial stem cells upon hypothermic transportation.
Male
;
Animals
;
Testis/cytology*
;
Aminolevulinic Acid/pharmacology*
;
Mice
;
Organ Preservation/methods*
;
Organ Preservation Solutions/pharmacology*
;
Cryopreservation/methods*
2.Microneedle combined with photodynamic therapy in the treatment of oral leukoplakia.
Ying HAN ; Pu ZHAO ; Hongwei LIU
Journal of Peking University(Health Sciences) 2025;57(1):91-96
OBJECTIVE:
To explore whether microneedle pretreatment can significantly improve the efficacy and safety of 5-aminolevulinic acid (ALA)-photodynamic therapy (PDT) in the treatment of oral leukoplakia.
METHODS:
A non-randomized controlled clinical trial was conducted. Patients with clinical and pathological diagnosis of oral leukoplakia in the Department of Oral Mucosa, Peking University School and Hospital of Stomatology were divided into experimental group and control group. The control group was treated with conventional ALA-PDT, and the experimental group was pretreated with micro- needle buckling under superficial anesthesia with lidocaine before conventional ALA-PDT. The clinical manifestations of the two groups were recorded, the lesion area was measured, the clinical efficacy was evaluated, the number of treatment sessions and treatment unit duration were analyzed, and the pain after treatment was evaluated by visual analogue scale. The above data of the two groups were statistically analyzed.
RESULTS:
A total of 11 patients were included in the experimental group and 19 patients were included in the control group. The complete remission rate of the experimental group and the control group was 45.5% and 36.8%, the partial remission rate was 54.5% and 57.9%, and the no remission rate was 0% and 5%, respectively. There was no significant difference in the treatment effect between the two groups. Meanwhile, the treatment unit duration of the experimental group and the control group were (9.05±5.74) min/cm2 and (21.38±15.44) min/cm2, respectively, and the number of treatment sessions were (2.36±0.67) times and (3.58±1.57) times, respectively. These differences between the two groups were statistically significant (t=-3.125, P < 0.05; t=-2.932, P < 0.05). Similarly, multiple linear regression analysis with 7 factors including age, dysplastic pathology, lesion classification, etc., also confirmed that pretreatment could significantly shorten the treatment unit duration (P < 0.05). In addition, there was no significant difference in pain score (visual analogue scale) between the two groups after treatment, and the microneedle puncture pretreatment did not increase the adverse reactions of ALA-PDT treatment.
CONCLUSION
Microneedle pretreatment followed by conventional ALA-PDT shows a good clinical effect on oral leukoplakia, which can significantly shorten the clinical treatment time, reduce the number of visits, and save medical costs.
Humans
;
Photochemotherapy/instrumentation*
;
Leukoplakia, Oral/drug therapy*
;
Aminolevulinic Acid/therapeutic use*
;
Male
;
Female
;
Middle Aged
;
Adult
;
Needles
;
Photosensitizing Agents/therapeutic use*
;
Aged
;
Combined Modality Therapy
3.Successful in situ 5-aminolevulinic acid photodynamic therapy in a 53-year-old female with cutaneous squamous cell carcinoma.
Limin LUO ; Xiaoling JIANG ; Jianjun QIAO ; Hong FANG ; Jun LI
Journal of Zhejiang University. Science. B 2025;26(9):915-922
Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC), as certain forms of non-melanoma skin cancer (NMSC) or keratinocyte carcinoma, are the most common forms of malignant neoplasms worldwide (Sharp et al., 2024). BCC and cSCC have been identified as two major components of NMSC, comprising one-third of all malignancies (Burton et al., 2016). Generally speaking, patients with NMSC tend to have relatively favorable survival outcomes, while different histopathological subtypes of NMSC exhibit distinct biological behaviors (Stătescu et al., 2023). Keratinocyte carcinoma, although not considered as deadly as melanoma, tends to metastasize if left untreated (Civantos et al., 2023; Nanz et al., 2024). cSCC can evolve locally, then aggressively metastasize, invade, and even lead to fatal consequences in a subset of patients (Winge et al., 2023). A solid, pigmented, smooth plaque or a hyperkeratotic papule with or without central ulceration and hemorrhage appears to be characteristic of cSCC (Thompson et al., 2016; Zhou et al., 2023). Of note, a rare type of intraepidermal cSCC in situ often appears as a velvety, demarcated, slightly raised erythematous plaque on the genitalia of men (Yamaguchi et al., 2016). Accounting for approximately 16.0% of scalp tumors and with a rising incidence, cSCC is now the second most common NMSC in humans (Verdaguer-Faja et al., 2024). According to the latest statistics, up to 2%‒5% of cSCCs in situ may gradually progress into invasive cSCCs in the final step (Rentroia-Pacheco et al., 2023). Several risk factors for the carcinogenesis and development of cSCC have been identified, including age, accumulative exposure to ultraviolet light radiation A and B, human papillomavirus infection, arsenic ingestion, chronic scarring, xeroderma pigmentosa, a relevant history of ionizing radiation, androgenetic alopecia in males, and immunosuppression therapy (Martinez and Otley, 2001; Welsch et al., 2012; Mortaja and Demehri, 2023).
Humans
;
Aminolevulinic Acid/therapeutic use*
;
Skin Neoplasms/pathology*
;
Photochemotherapy/methods*
;
Female
;
Carcinoma, Squamous Cell/pathology*
;
Middle Aged
;
Photosensitizing Agents/therapeutic use*
;
Carcinoma, Basal Cell/drug therapy*
4.Protein engineering for the modification of a L-amino acid deaminase for efficient synthesis of phenylpyruvic acid.
Xuanping SHI ; Yue WANG ; Zhina QIAO ; Jiajia YOU ; Zhiming RAO
Chinese Journal of Biotechnology 2025;41(9):3521-3536
Phenylpyruvic acid (PPA) is used as a food and feed additive and has a wide range of applications in the pharmaceutical, chemical and other fields. At present, PPA is mainly produced by chemical synthesis. With the green transformation of the manufacturing industry, biotransformation will be a good alternative for PPA production. The L-amino acid deaminase (PmiLAAD) from Proteus mirabilis has been widely studied for the production of PPA. However, the low yield limits its industrial production. To further enhance the production of PPA and better meet industrial demands, a more efficient synthesis method for PPA was established. In this study, PmiLAAD was heterologously expressed in Escherichia coli. Subsequently, a colorimetric reaction method was established to screen the strains with high PPA production. The semi-rational design of PmiLAAD was carried out, and the obtained triple-site mutant V18 (V437I/S93C/E417A) showed a 35% increase in catalytic activity compared with the wild type. Meanwhile, the effect of N-terminal truncation on the catalytic activity of the V18 mutant was investigated. After the optimization of the whole-cell conditions for the obtained mutant V18-N7, fed-batch conversion was carried out in a 5-L fermenter, and 44.13 g/L of PPA was synthesized with a conversion rate of 88%, which showed certain potential for industrial application. This study lays foundation for the industrial production of phenylpyruvic acid and also offers insights into the biosynthesis of other chemicals.
Escherichia coli/metabolism*
;
Proteus mirabilis/genetics*
;
Phenylpyruvic Acids/metabolism*
;
Protein Engineering/methods*
;
Recombinant Proteins/biosynthesis*
;
Bacterial Proteins/metabolism*
5.Establishment and application of chemically inducible chromosomal evolution in Escherichia coli Nissle 1917.
Yumei LIU ; Qingli ZHANG ; Lijun SHAO ; Xiaojing LIU ; Xiaoli YU
Chinese Journal of Biotechnology 2024;40(12):4594-4604
The probiotic strain Escherichia coli Nissle 1917 (EcN) with high biocompatibility and susceptibility to genetic modification is often applied in bacterial therapies for cancer. However, most studies have used plasmids as vectors to construct engineering strains from EcN. Plasmid-based expression systems suffer from genetic instability, and they need antibiotic selective pressure to maintain high copy number. This study aimed to employ EcN for synthesizing the photosensitizer 5-aminolevulinic acid (5-ALA). Firstly, the key genes of 5-ALA synthesis, hemAM and hemL, were integrated into the EcN genome by the phage integration technique. Then, chemically inducible chromosomal evolution (CIChE) was adopted to increase the copy number of hemAM and hemL and thus improved the stable synthesis of 5-ALA. The in vitro cell experiments verified that the constructed engineering strain can deliver stably synthesized 5-ALA to tumor cells and inhibit their growth. This study provided a basis for applying the engineering strains of EcN in the photodynamic therapy for tumors.
Escherichia coli/metabolism*
;
Aminolevulinic Acid/metabolism*
;
Photosensitizing Agents/pharmacology*
;
Plasmids/genetics*
;
Chromosomes, Bacterial/genetics*
;
Genetic Engineering
;
Humans
;
Probiotics
;
Photochemotherapy
6.Effect of hemX gene deletion on heme synthesis in Bacillus amyloliquefaciens.
Jiameng LIU ; Yexue LIU ; Chenxu ZHAO ; Wenhang WANG ; Qinggang LI ; Fuping LU ; Yu LI
Chinese Journal of Biotechnology 2023;39(3):1119-1130
Heme, which exists widely in living organisms, is a porphyrin compound with a variety of physiological functions. Bacillus amyloliquefaciens is an important industrial strain with the characteristics of easy cultivation and strong ability for expression and secretion of proteins. In order to screen the optimal starting strain for heme synthesis, the laboratory preserved strains were screened with and without addition of 5-aminolevulinic acid (ALA). There was no significant difference in the heme production of strains BA, BAΔ6 and BAΔ6ΔsigF. However, upon addition of ALA, the heme titer and specific heme production of strain BAΔ6ΔsigF were the highest, reaching 200.77 μmol/L and 615.70 μmol/(L·g DCW), respectively. Subsequently, the hemX gene (encoding the cytochrome assembly protein HemX) of strain BAΔ6ΔsigF was knocked out to explore its role in heme synthesis. It was found that the fermentation broth of the knockout strain turned red, while the growth was not significantly affected. The highest ALA concentration in flask fermentation reached 82.13 mg/L at 12 h, which was slightly higher than that of the control 75.11 mg/L. When ALA was not added, the heme titer and specific heme production were 1.99 times and 1.45 times that of the control, respectively. After adding ALA, the heme titer and specific heme production were 2.08 times and 1.72 times higher than that of the control, respectively. Real-time quantitative fluorescent PCR showed that the expressions of hemA, hemL, hemB, hemC, hemD, and hemQ genes at transcription level were up-regulated. We demonstrated that deletion of hemX gene can improve the production of heme, which may facilitate future development of heme-producing strain.
Gene Deletion
;
Bacillus amyloliquefaciens/metabolism*
;
Aminolevulinic Acid/metabolism*
;
Heme/metabolism*
;
Fermentation
7.Rational metabolic engineering of Corynebacterium glutamicum for efficient synthesis of L-glutamate.
Jiafeng LIU ; Zhina QIAO ; Youxi ZHAO ; Meijuan XU ; Xian ZHANG ; Taowei YANG ; Zhiming RAO
Chinese Journal of Biotechnology 2023;39(8):3273-3289
L-glutamic acid is the world's largest bulk amino acid product that is widely used in the food, pharmaceutical and chemical industries. Using Corynebacterium glutamicum G01 as the starting strain, the fermentation by-product alanine content was firstly reduced by knocking out the gene encoding alanine aminotransferase (alaT), a major by-product related to alanine synthesis. Secondly, since the α-ketoglutarate node carbon flow plays an important role in glutamate synthesis, the ribosome-binding site (RBS) sequence optimization was used to reduce the activity of α-ketoglutarate dehydrogenase and enhance the glutamate anabolic flow. The endogenous conversion of α-ketoglutarate to glutamate was also enhanced by screening different glutamate dehydrogenase. Subsequently, the glutamate transporter was rationally desgined to improve the glutamate efflux capacity. Finally, the fermentation conditions of the strain constructed using the above strategy were optimized in 5 L fermenters by a gradient temperature increase combined with a batch replenishment strategy. The glutamic acid production reached (135.33±4.68) g/L, which was 41.2% higher than that of the original strain (96.53±2.32) g/L. The yield was 55.8%, which was 11.6% higher than that of the original strain (44.2%). The combined strategy improved the titer and the yield of glutamic acid, which provides a reference for the metabolic modification of glutamic acid producing strains.
Glutamic Acid
;
Corynebacterium glutamicum/genetics*
;
Ketoglutaric Acids
;
Metabolic Engineering
;
Alanine
8.Metabolic engineering of Escherichia coli for production of salicylate 2-O-β-d-glucoside.
Ruosong LI ; Yanfeng PENG ; Long MA ; Qinhong WANG
Chinese Journal of Biotechnology 2023;39(8):3290-3301
Salicylate 2-O-β-d-glucoside (SAG) is a derivative of salicylate in plants. Recent reports showed that SAG could be considered as a potential anti-inflammatory substance due to its anti-inflammatory and analgesic effects, and less irritation compared with salicylic acid and aspirin. The biological method uses renewable resources to produce salicylic acid compounds, which is more environmentally friendly than traditional industry methods. In this study, Escherichia coli Tyr002 was used as the starting strain, and a salicylic acid producing strain of E. coli was constructed by introducing the isochorismate pyruvate lyase gene pchB from Pseudomonas aeruginosa. By regulating the expression of the key genes in the downstream aromatic amino acid metabolic pathways, the titer of salicylic acid reached 1.05 g/L in shake flask fermentation. Subsequently, an exogenous salicylic acid glycosyltransferase was introduced into the salicylic acid producing strain to glycosylate the salicylic acid. The newly engineered strain produced 5.7 g/L SAG in shake flask fermentation. In the subsequent batch fed fermentation in a 5 L fermentation tank, the titer of SAG reached 36.5 g/L, which is the highest titer reported to date. This work provides a new route for biosynthesis of salicylate and its derivatives.
Escherichia coli/genetics*
;
Glucosides
;
Metabolic Engineering
;
Salicylic Acid
;
Pyruvic Acid
9.Silver nanoparticles-resistance of HeLa cell associated with its unusually high concentration of α-ketoglutarate and glutathione.
Heming CHEN ; Yujing HE ; Xueqing CHEN ; Fuchang DENG ; Zhisong LU ; Yingshuai LIU ; Huamao DU
Chinese Journal of Biotechnology 2023;39(10):4189-4203
Silver nanoparticles (AgNPs) is known as one of the most valuable metal nanoparticles in antibacterial and anticancer application. AgNPs-resistant bacteria has been documented, but it is unclear whether cancer cells can also escape the anti-cancer effect of AgNPs. In this study, we aimed to investigate this phenomenon and its underlying mechanism. The antibacterial activity and cytotoxicity of AgNPs were measured in the presence of HeLa cell metabolites. The status of AgNPs in the system associated with metabolites were characterized by UV-Vis, Zetasizer Nano ZS, and transmission electron microscopy. Non-targeted metabolomics was used to reveal the metabolites components that bind with AgNPs. HeLa cells were injected intraperitoneally to establish the tumor-bearing mice model, and the stability of AgNPs in mice serum was analyzed. The results manifested that HeLa cell metabolites inhibited the anticancer and antibacterial effects of AgNPs in a dose-dependent manner by causing AgNPs aggregation. Effective metabolites that inhibited the biological activity of AgNPs were stable in 100 ℃, insoluble in chloroform, containing sulfur elements, and had a molecular weight less than 1 kDa in molecular weight. There were 115 compounds bound with AgNPs. In vitro experiments showed that AgNPs aggregation occurred only when the concentration of α-ketoglutarate (AKG) and glutathione (GSH) together reached a certain threshold. Interestingly, the concentration of AKG and GSH in HeLa cellular metabolites was 10 and 6 times higher than that in normal cervical epithelial cells, respectively, which explained why the threshold was reached. Furthermore, the stability of AgNPs in the serum of tumor-bearing mice decreased by 20% (P < 0.05) compared with the healthy mice. In conclusion, our study demonstrates that HeLa cells escaped the anti-cancer effect of AgNPs through the synergistic effect of AKG and GSH, suggesting the need to develop strategies to overcome this limitation.
Humans
;
Animals
;
Mice
;
HeLa Cells
;
Silver/pharmacology*
;
Ketoglutaric Acids/pharmacology*
;
Metal Nanoparticles
;
Anti-Bacterial Agents/pharmacology*
;
Glutathione
;
Microbial Sensitivity Tests
10.Mitochondrial pyruvate carrier deficiency: 3 cases report and literature review.
Hua Fang JIANG ; Fang FANG ; Zhi Mei LIU ; Chao Long XU ; PeiQing ZHAO ; Xiao Ling FU
Chinese Journal of Pediatrics 2023;61(11):995-1000
Objective: To analyze the clinical and genetic features of patients with mitochondrial pyruvate carrier deficiency (MPYCD). Methods: This was a case series research. The clinical data, genetic characteristics, and glutamine treatment efficacy of 3 patients diagnosed with MPYCD at the Department of Neurology, Beijing Children's Hospital, Capital Medical University and Department of Pediatrics, Guizhou Provincial People's Hospital, from August 2019 to June 2023 were retrospectively collected. A literature search with "MPC1 gene" "MPC2 gene and" "mitochondrial pyruvate carrier deficiency" as keywords was conducted at the Wanfang Data Knowledge Service Platform, China National Knowledge Infrastructure (CNKI) and PubMed (up to June 2023). Clinical and genetic characteristics of patients with MPYCD were summarized. Results: Case 1 was a 3 years and 11 months old boy, while case 2 was a 4 years and 10 months old boy and case 3 was an 8 years and 9 months old girl. Case 2 and case 3 were siblings from one consanguineous family. All 3 patients presented with general developmental delay, growth failure and elevated serum lactate. Cranial magnetic resonance imaging (MRI) showed subtle bilateral symmetrical T2 signal hyperintensity in basal ganglia and thalamus in case 1, but normal in case 2 and 3. Trio-WES revealed case 1 harboring compound heterozygous missense variants c.208G>A (p.Ala70Thr) and c.290G>A (p.Arg97Gln) in MPC1 gene, while case 2 and 3 revealed a homozygous variant c.290G>A (p.Arg97Gln) in the same gene. All 3 cases were diagnosecl as MPYCD. Clinical symptoms including motor ability, cognition and activity endurance were improved in these 3 patients after taking glutamine for 2 years. A total of 5 articles published in English were reviewed, and no Chinese literature was found. Including these 3 cases, 15 cases were enrolled for analysis. Eleven patients carried MPC1 gene variants and 4 cases carried MPC2 gene variants. Except for 3 cases died during prenatal period, 9 of 12 enrolled born cases were onset before 6 months old. The most common clinical symptoms were mental and motor general developmental delay, microcephaly, growth failure and hypotonia. All patients had elevated blood lactate and pyruvate, but the ratio of lactate/pyruvate was normal. Seven patients performed cranial MRI, 3 exhibited non-specific changes, 2 showed bilateral symmetrical T2 signal hyperintensity in basal ganglia and thalamus, and 3 were normal. A total of 5 MPC1 gene missense variants and 2 MPC2 gene variants were identified in 15 cases. Conclusions: Onset age of patients with MPYCD is usually within 6 months. The main clinical characteristics are developmental delay, microcephaly and growth failure, accompanied by increased serum lactate and pyruvate. Glutamine supplement could lead to clinical improvements.
Child
;
Female
;
Humans
;
Male
;
Glutamine
;
Lactates
;
Microcephaly
;
Monocarboxylic Acid Transporters
;
Pyruvates
;
Retrospective Studies
;
Child, Preschool

Result Analysis
Print
Save
E-mail