1.Magnesium promotes vascularization and osseointegration in diabetic states.
Linfeng LIU ; Feiyu WANG ; Wei SONG ; Danting ZHANG ; Weimin LIN ; Qi YIN ; Qian WANG ; Hanwen LI ; Quan YUAN ; Shiwen ZHANG
International Journal of Oral Science 2024;16(1):10-10
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues. Magnesium has been proved to promote bone healing under normal conditions. Here, we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status. We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised, with significantly decreased angiogenesis. We then developed Mg-coating implants with hydrothermal synthesis. These implants successfully improved the vascularization and osseointegration in diabetic status. Mechanically, Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1 (Keap1) and the nucleation of nuclear factor erythroid 2-related factor 2 (Nrf2) by up-regulating the expression of sestrin 2 (SESN2) in endothelial cells, thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia. Altogether, our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
Mice
;
Animals
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Magnesium/metabolism*
;
Osseointegration
;
Diabetes Mellitus, Experimental/metabolism*
;
Endothelial Cells/metabolism*
;
NF-E2-Related Factor 2/metabolism*
2.The role of Keap1/Nrf2/HO-1 signal pathway in liver injury induced by rare earth neodymium oxide in mice.
Ning BU ; Shu Rui WANG ; Yan Rong GAO ; Yu Hang ZHAO ; Xue Min SHI ; Su Hua WANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(3):161-167
Objective: To investigate the role of Keap1/Nrf2/HO-1 signaling pathway in liver injury induced by neodymium oxide (Nd(2)O(3)) in mice. Methods: In March 2021, forty-eight SPF grade healthy male C57BL/6J mice were randomly divided into control group (0.9% NaCl), low dose group (62.5 mg/ml Nd(2)O(3)), medium dose group (125.0 mg/ml Nd(2)O(3)), and high dose group (250.0 mg/ml Nd(2)O(3)), each group consisted of 12 animals. The infected groups were treated with Nd(2)O(3) suspension by non-exposed tracheal drip and were killed 35 days after dust exposure. The liver weight of each group was weighed and the organ coefficient was calculated. The content of Nd(3+) in liver tissue was detected by inductively coupled plasma mass spectrometry (ICP-MS). HE staining and immunofluorescence was used to observe the changes of inflammation and nuclear entry. The mRNA expression levels of Keap1, Nrf2 and HO-1 in mice liver tissue were detected by qRT-PCR. Western blotting was used to detect the protein expression levels of Keap1 and HO-1. The contents of catalase (CAT), glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD) were detected by colorimetric method. The contents of interleukin 1β (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) were determined by ELISA. The data was expressed in Mean±SD. Two-independent sample t-test was used for inter-group comparison, and one-way analysis of variance was used for multi-group comparison. Results: Compared with the control group, the liver organ coefficient of mice in medium and high dose groups were increased, and the Nd(3+) accumulation in liver of mice in all dose groups were significantly increased (P<0.05). Pathology showed that the structure of liver lobules in the high dose group was slightly disordered, the liver cells showed balloon-like lesions, the arrangement of liver cell cords was disordered, and the inflammatory exudation was obvious. Compared with the control group, the levels of IL-1β and IL-6 in liver tissue of mice in all dose groups were increased, and the levels of TNF-α in liver tissue of mice in high dose group were increased (P<0.05). Compared with the control group, the mRNA and protein expression levels of Keap1 in high dose group were significantly decreased, while the mRNA expression level of Nrf2, the mRNA and protein expression levels of HO-1 were significantly increased (P<0.05), and Nrf2 was successfully activated into the nucleus. Compared with the control group, the activities of CAT, GSH-Px and T-SOD in high dose group were significantly decreased (P<0.05) . Conclusion: A large amount of Nd(2)O(3) accumulates in the liver of male mice, which may lead to oxidative stress and inflammatory response through activation of Keap1/Nrf2/HO-1 signal pathway. It is suggested that Keap1/Nrf2/HO-1 signal pathway may be one of the mechanisms of Nd(2)O(3) expose-induced liver injury in mice.
Mice
;
Male
;
Animals
;
NF-E2-Related Factor 2/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Interleukin-6/metabolism*
;
Mice, Inbred C57BL
;
Oxidative Stress
;
Liver/metabolism*
;
Metals, Rare Earth
;
Signal Transduction
;
Superoxide Dismutase/metabolism*
;
RNA, Messenger/metabolism*
3.Lyciumbarbarum polysaccharides ameliorate canine acute liver injury by reducing oxidative stress, protecting mitochondrial function, and regulating metabolic pathways.
Jianjia HUANG ; Yuman BAI ; Wenting XIE ; Rongmei WANG ; Wenyue QIU ; Shuilian ZHOU ; Zhaoxin TANG ; Jianzhao LIAO ; Rongsheng SU
Journal of Zhejiang University. Science. B 2023;24(2):157-171
The development of acute liver injury can result in liver cirrhosis, liver failure, and even liver cancer, yet there is currently no effective therapy for it. The purpose of this study was to investigate the protective effect and therapeutic mechanism of Lyciumbarbarum polysaccharides (LBPs) on acute liver injury induced by carbon tetrachloride (CCl4). To create a model of acute liver injury, experimental canines received an intraperitoneal injection of 1 mL/kg of CCl4 solution. The experimental canines in the therapy group were then fed LBPs (20 mg/kg). CCl4-induced liver structural damage, excessive fibrosis, and reduced mitochondrial density were all improved by LBPs, according to microstructure data. By suppressing Kelch-like epichlorohydrin (ECH)-associated protein 1 (Keap1), promoting the production of sequestosome 1 (SQSTM1)/p62, nuclear factor erythroid 2-related factor 2 (Nrf2), and phase II detoxification genes and proteins downstream of Nrf2, and restoring the activity of anti-oxidant enzymes like catalase (CAT), LBPs can restore and increase the antioxidant capacity of liver. To lessen mitochondrial damage, LBPs can also enhance mitochondrial respiration, raise tissue adenosine triphosphate (ATP) levels, and reactivate the respiratory chain complexes I‒V. According to serum metabolomics, the therapeutic impact of LBPs on acute liver damage is accomplished mostly by controlling the pathways to lipid metabolism. 9-Hydroxyoctadecadienoic acid (9-HODE), lysophosphatidylcholine (LysoPC/LPC), and phosphatidylethanolamine (PE) may be potential indicators of acute liver injury. This study confirmed that LBPs, an effective hepatoprotective drug, may cure acute liver injury by lowering oxidative stress, repairing mitochondrial damage, and regulating metabolic pathways.
Animals
;
Dogs
;
Antioxidants/metabolism*
;
Carbon Tetrachloride
;
Chemical and Drug Induced Liver Injury/drug therapy*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Liver
;
Metabolic Networks and Pathways
;
Mitochondria/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress
;
Polysaccharides/pharmacology*
;
Lycium/chemistry*
4.Andrographolide protects against atrial fibrillation by alleviating oxidative stress injury and promoting impaired mitochondrial bioenergetics.
Pengcheng YU ; Jiaru CAO ; Huaxin SUN ; Yingchao GONG ; Hangying YING ; Xinyu ZHOU ; Yuxing WANG ; Chenyang QI ; Hang YANG ; Qingbo LV ; Ling ZHANG ; Xia SHENG
Journal of Zhejiang University. Science. B 2023;24(7):632-649
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia seen in clinical settings, which has been associated with substantial rates of mortality and morbidity. However, clinically available drugs have limited efficacy and adverse effects. We aimed to investigate the mechanisms of action of andrographolide (Andr) with respect to AF. We used network pharmacology approaches to investigate the possible therapeutic effect of Andr. To define the role of Andr in AF, HL-1 cells were pro-treated with Andr for 1 h before rapid electronic stimulation (RES) and rabbits were pro-treated for 1 d before rapid atrial pacing (RAP). Apoptosis, myofibril degradation, oxidative stress, and inflammation were determined. RNA sequencing (RNA-seq) was performed to investigate the relevant mechanism. Andr treatment attenuated RAP-induced atrial electrophysiological changes, inflammation, oxidative damage, and apoptosis both in vivo and in vitro. RNA-seq indicated that oxidative phosphorylation played an important role. Transmission electron microscopy and adenosine triphosphate (ATP) content assay respectively validated the morphological and functional changes in mitochondria. The translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus and the molecular docking suggested that Andr might exert a therapeutic effect by influencing the Keap1-Nrf2 complex. In conclusions, this study revealed that Andr is a potential preventive therapeutic drug toward AF via activating the translocation of Nrf2 to the nucleus and the upregulation of heme oxygenase-1 (HO-1) to promote mitochondrial bioenergetics.
Animals
;
Rabbits
;
Atrial Fibrillation/metabolism*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Signal Transduction
;
NF-E2-Related Factor 2/pharmacology*
;
Molecular Docking Simulation
;
Oxidative Stress
;
Energy Metabolism
;
Mitochondria/metabolism*
;
Inflammation/metabolism*
;
Heme Oxygenase-1
5.Mechanisms mediating the inhibitory effects of quercetin against phthalates-induced testicular oxidative damage in rats.
Lilan LIU ; Ruya DENG ; Wenjin ZHOU ; Min LIN ; Lingzi XIA ; Haitao GAO
Journal of Southern Medical University 2023;43(4):577-584
OBJECTIVE:
To explore the mechanism underlying the inhibitory effect of quercetin against testicular oxidative damage induced by a mixture of 3 commonly used phthalates (MPEs) in rats.
METHODS:
Forty male Sprague-Dawley rats were randomly divided into control group, MPEs exposure group, and MPEs with low-, median- and high-dose quercetin treatment groups. For MPEs exposure, the rats were subjected to intragastric administration of MPEs at the daily dose of 900 mg/kg for 30 consecutive days; Quercetin treatments were administered in the same manner at the daily dose of 10, 30, and 90 mg/kg. After the treatments, serum levels of testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH), and testicular malondialdeyhde (MDA), catalase (CAT) and superoxide dismutase (SOD) were detected, and testicular pathologies of the rats were observed with HE staining. The expressions of nuclear factor-E2-related factor 2 (Nrf2), Kelch-like ECH2 associated protein 1 (Keap1) and heme oxygenase 1 (HO-1) in the testis were detected using immunofluorescence assay and Western blotting.
RESULTS:
Compared with the control group, the rats with MPEs exposure showed significant reductions of the anogenital distance, weight of the testis and epididymis, and the coefficients of the testis and epididymis with lowered serum testosterone, LH and FSH levels (P < 0.05). Testicular histological examination revealed atrophy of the seminiferous tubules, spermatogenic arrest, and hyperplasia of the Leydig cells in MPEs-exposed rats. MPEs exposure also caused significant increments of testicular Nrf2, MDA, SOD, CAT and HO-1 expressions and lowered testicular Keap1 expression (P < 0.05). Treatment with quercetin at the median and high doses significantly ameliorated the pathological changes induced by MPEs exposure (P < 0.05).
CONCLUSION
Quercetin treatment inhibits MPEs-induced oxidative testicular damage in rats possibly by direct scavenging of free radicals to lower testicular oxidative stress and restore the regulation of the Nrf2 signaling pathway.
Rats
;
Male
;
Animals
;
Testis
;
Quercetin/pharmacology*
;
Rats, Sprague-Dawley
;
NF-E2-Related Factor 2/metabolism*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Oxidative Stress
;
Testosterone/pharmacology*
;
Superoxide Dismutase/metabolism*
;
Follicle Stimulating Hormone
;
Luteinizing Hormone
6.Neuroprotective effect of ginsenoside Re on drosophila model of Parkinson's disease.
Yan XU ; Xue MENG ; Wen-Xue ZHAO ; Dong-Guang LIU ; Jian-Guo ZHU ; Ru YAO ; Jing-Chun YAO ; Gui-Min ZHANG
China Journal of Chinese Materia Medica 2023;48(7):1927-1935
This study aims to explore the neuroprotective mechanism of ginsenoside Re(GS-Re) on drosophila model of Parkinson's disease(PD) induced by rotenone(Rot). To be specific, Rot was used to induce PD in drosophilas. Then the drosophilas were grouped and respectively treated(GS-Re: 0.1, 0.4, 1.6 mmol·L~(-1); L-dopa: 80 μmol·L~(-1)). Life span and crawling ability of drosophilas were determined. The brain antioxidant activity [content of catalase(CAT), malondialdehyde(MDA), reactive oxygen species(ROS), superoxide dismutase(SOD)], dopamine(DA) content, and mitochondrial function [content of adenosine triphosphate(ATP), NADH:ubiquinone oxidoreductase subunit B8(NDUFB8) Ⅰ activity, succinate dehydrogenase complex, subunit B(SDHB) Ⅱ activity] were detected by enzyme-linked immunosorbent assay(ELISA). The number of DA neurons in the brains of drosophilas was measured with the immunofluorescence method. The levels of NDUFB8 Ⅰ, SDHB Ⅱ, cytochrome C(Cyt C), nuclear factor-E2-related factor 2(Nrf2), heme oxygenase-1(HO-1), B-cell lymphoma/leukemia 2(Bcl-2)/Bcl-2-assaciated X protein(Bax), and cleaved caspase-3/caspase-3 in the brain were detected by Western blot. The results showed that model group [475 μmol·L~(-1) Rot(IC_(50))] demonstrated significantly low survival rate, obvious dyskinesia, small number of neurons and low DA content in the brain, high ROS level and MDA content, low content of SOD and CAT, significantly low ATP content, NDUFB8 Ⅰ activity, and SDHB Ⅱ activity, significantly low expression of NDUFB8 Ⅰ, SDHB Ⅱ, and Bcl-2/Bax, large amount of Cyt C released from mitochondria to cytoplasm, low nuclear transfer of Nrf2, and significantly high expression of cleaved caspase-3/caspase-3 compared with the control group. GS-Re(0.1, 0.4, and 1.6 mmol·L~(-1)) significantly improved the survival rate of PD drosophilas, alleviated the dyskinesia, increased DA content, reduced the loss of DA neurons, ROS level, and MDA content in brain, improved content of SOD and CAT and antioxidant activity in brain, maintained mitochondrial homeostasis(significantly increased ATP content and activity of NDUFB8 Ⅰ and SDHB Ⅱ, significantly up-regulated expression of NDUFB8 Ⅰ, SDHB Ⅱ, and Bcl-2/Bax), significantly reduced the expression of Cyt C, increased the nuclear transfer of Nrf2, and down-regulated the expression of cleaved caspase-3/caspase-3. In conclusion, GS-Re can significantly relieve the Rot-induced cerebral neurotoxicity in drosophilas. The mechanism may be that GS-Re activates Keap1-Nrf2-ARE signaling pathway by maintaining mitochondrial homeostasis, improves antioxidant capacity of brain neurons, then inhibits mitochondria-mediated caspase-3 signaling pathway, and the apoptosis of neuronal cells, thereby exerting the neuroprotective effect.
Animals
;
Reactive Oxygen Species/metabolism*
;
Antioxidants/pharmacology*
;
Oxidative Stress
;
NF-E2-Related Factor 2/metabolism*
;
Caspase 3/metabolism*
;
Parkinson Disease/genetics*
;
bcl-2-Associated X Protein/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Drosophila/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Apoptosis
;
Superoxide Dismutase/metabolism*
;
Adenosine Triphosphate/pharmacology*
7.DJ1 Ameliorates AD-like Pathology in the Hippocampus of APP/PS1 Mice.
Yang Yang PENG ; Meng Xin LI ; Wen Jie LI ; Yuan XUE ; Yu Fan MIAO ; Yu Lin WANG ; Xiao Chen FAN ; Lu Lu TANG ; Han Lu SONG ; Qian ZHANG ; Xing LI
Biomedical and Environmental Sciences 2023;36(11):1028-1044
OBJECTIVE:
To explore whether the protein Deglycase protein 1 (DJ1) can ameliorate Alzheimer's disease (AD)-like pathology in Amyloid Precursor Protein/Presenilin 1 (APP/PS1) double transgenic mice and its possible mechanism to provide a theoretical basis for exploring the pathogenesis of AD.
METHODS:
Adeno-associated viral vectors (AAV) of DJ1-overexpression or DJ1-knockdown were injected into the hippocampus of 7-month-old APP/PS1 mice to construct models of overexpression or knockdown. Mice were divided into the AD model control group (MC), AAV vector control group (NC), DJ1-overexpression group (DJ1 +), and DJ1-knockdown group (DJ1 -). After 21 days, the Morris water maze test, immunohistochemistry, immunofluorescence, and western blotting were used to evaluate the effects of DJ1 on mice.
RESULTS:
DJ1 + overexpression decreased the latency and increased the number of platform traversals in the water maze test. DJ1 - cells were cured and atrophied, and the intercellular structure was relaxed; the number of age spots and the expression of AD-related proteins were significantly increased. DJ1 + increased the protein expression of Nuclear factor erythroid 2-related factor 2 (NRF2), heme oxygenase-1 (HO-1), light chain 3 (LC3), phosphorylated AMPK (p-AMPK), and B cell lymphoma-2 (BCL-2), as well as the antioxidant levels of total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC), and Glutathione peroxidase (GSH-PX), while decreasing the levels of Kelch-like hydrates-associated protein 1 (Keap1), mammalian target of rapamycin (mTOR), p62/sequestosome1 (p62/SQSTM1), Caspase3, and malondialdehyde (MDA).
CONCLUSION
DJ1-overexpression can ameliorate learning, memory, and AD-like pathology in APP/PS1 mice, which may be related to the activation of the NRF2/HO-1 and AMPK/mTOR pathways by DJ1.
Animals
;
Mice
;
Alzheimer Disease/therapy*
;
AMP-Activated Protein Kinases/metabolism*
;
Amyloid beta-Protein Precursor/metabolism*
;
Antioxidants/metabolism*
;
Disease Models, Animal
;
Hippocampus/metabolism*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Mammals/metabolism*
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
NF-E2-Related Factor 2/metabolism*
;
Presenilin-1/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
8.Total triterpenes of Euphorbium alleviates rheumatoid arthritis via Nrf2/HO-1/GPX4 pathway.
Mao-Jie ZHOU ; Wei TAN ; Ha-Mu-la-Ti HASIMU ; Lei XU ; Zheng-Yi GU ; Jun ZHAO
China Journal of Chinese Materia Medica 2023;48(18):4834-4842
This study aims to investigate the effect and mechanism of total triterpenes of Euphorbium in treating rheumatoid arthritis(RA). The rat model of RA was established with Freund's complete adjuvant(FCA). Male rats were randomly assigned into control, model, Tripterygium glycosides(7.5 mg·kg~(-1)), and low-, medium-, and high-dose total triterpenes of Euphorbium(32, 64, and 128 mg·kg~(-1), respectively) groups, with 10 rats in each group. In other groups except the control group, 0.2 mL FCA was injected into the right hind toe. Rats in the intervention groups were administrated with corresponding drugs by gavage, and the control group and the model group with the same volume of 0.5% CMC-Na solution once a day. During the treatment period, the swelling degree of the hind paw was measured and the arthritis was scored until day 30. At the end of drug administration, the pathological changes of the joint tissue were observed by hematoxylin-eosin staining. The content of malondialdehyde(MDA), glutathione(GSH), and Fe~(2+) and the activity of superoxide dismutase(SOD) in the joint tissue were measured by biochemical colorimetry. RT-PCR was performed to determine the mRNA levels of nuclear factor erythroid 2-related factor 2(Nrf2), glutathione peroxidase 4(GPX4), and acyl-CoA synthetase long chain family member 4(ACSL4) in the joint tissue. Western blot was employed to determine the protein levels of Nrf2, Kelch-like ECH-associated protein 1(Keap1), heme oxygenase-1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1), SOD2, GPX4, and ACSL4 in the joint tissue. The results showed that the treatment with Tripterygium glycosides(7.5 mg·kg~(-1)) and total triterpenes of Euphorbium(32, 64, and 128 mg·kg~(-1)) alleviated the swelling degree of bilateral hind limbs, decreased the arthritis score, reduced joint tissue lesions and the content of MDA and Fe~(2+) in the joint tissue, and increased GSH content and SOD activity. Furthermore, the interventions up-regulated the protein and mRNA levels of Nrf2 and GPX4, down-regulated the protein and mRNA levels of ACSL4, and up-regulated the protein levels of Keap1, NQO1, HO-1, and SOD2 in the Nrf2/HO-1/GPX4. In summary, the total triterpenes of Euphorbium can treat RA by inhibiting lipid peroxidation and abnormal ferroptosis, which may involve the Nrf2/HO-1/GPX4 signaling pathway.
Rats
;
Male
;
Animals
;
Rats, Sprague-Dawley
;
NF-E2-Related Factor 2/metabolism*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Triterpenes/pharmacology*
;
Oxidative Stress
;
Arthritis, Rheumatoid/genetics*
;
Glutathione
;
Superoxide Dismutase/metabolism*
;
Glycosides/pharmacology*
;
RNA, Messenger/metabolism*
9.Protective effect and mechanism of Astragalus membranaceus and Angelica sinensis compatibility against triptolide-induced hepatotoxicity by regulating Keap1/Nrf2/PGC-1α.
Wei-Zheng ZHANG ; Xiao-Ming QI ; Yu-Qin ZUO ; Qing-Shan LI
China Journal of Chinese Materia Medica 2023;48(23):6378-6386
This paper aims to investigate the protective effect and mechanism of Astragalus membranaceus and Angelica sinensis before and after compatibility against triptolide(TP)-induced hepatotoxicity. The experiment was divided into a blank group, model group, Astragalus membranaceus group, Angelica sinensis group, and compatibility groups with Astragalus membranaceus/Angelica sinensis ratio of 1∶1, 2∶1, and 5∶1. TP-induced hepatotoxicity model was established, and corresponding drug intervention was carried out. The levels of alanine transaminase(ALT), aspartate transaminase(AST), and alkaline phosphatase(ALP) in serum were detected. Pathological injuries of livers were detected by hematoxylin-eosin(HE) staining. The levels of malondialdehyde(MDA), superoxide dismutase(SOD), glutathione peroxidase(GSH-Px), and reduced glutathione(GSH) in the liver were measured. Wes-tern blot method was used to detect the expression of nuclear factor erythroid 2-related factor 2(Nrf2), Kelch-like ECH-associated protein 1(Keap1), peroxisome proliferator-activated receptor gamma, coactivator-1 alpha(PGC-1α), heme oxygenase-1(HO-1), and NAD(P)H quinone dehydrogenase 1(NQO1) in livers. Immunofluorescence was used to detect the expression of Nrf2 and PGC-1α in livers. The results indicated that Astragalus membranaceus/Angelica sinensis ratio of 2∶1 and 5∶1 could significantly reduce the levels of serum AST, ALT, and ALP, improve the pathological damage of liver tissue, increase the levels of GSH and GSH-Px, and reduce the content of MDA in liver tissue. Astragalus membranaceus/Angelica sinensis ratio of 1∶1 and 2∶1 could significantly improve the level of SOD. Astragalus membranaceus and Angelica sinensis before and after compatibility significantly increased the protein expression of HO-1 and NQO1, improved the protein expression of Nrf2 and PGC-1α, and decreased the protein expression of Keap1 in liver tissue. The above results confirmed that the compatibility of Astragalus membranaceus and Angelica sinensis had antioxidant effects by re-gulating Keap1/Nrf2/PGC-1α, and the Astragalus membranaceus/Angelica sinensis ratio of 2∶1 and 5∶1 had stronger antioxidant effect and significantly reduced TP-induced hepatoto-xicity.
Humans
;
Astragalus propinquus
;
Angelica sinensis
;
NF-E2-Related Factor 2/metabolism*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Antioxidants/pharmacology*
;
Chemical and Drug Induced Liver Injury/prevention & control*
;
Superoxide Dismutase/metabolism*
;
Oxidative Stress
;
Diterpenes
;
Epoxy Compounds
;
Phenanthrenes
10.Mechanism of Tibetan medicine Ershiwuwei Songshi Pills against liver injury induced by acetaminophen in mice based on Keap1/Nrf2 and TLR4/NF-κB p65 signaling pathways.
Yu-Ru SHA ; Xiao-Min LUO ; Yi DING ; Bin YANG ; Cheng-Fang JIAN ; Pu-Yang GONG ; Jian GU ; Rui TAN
China Journal of Chinese Materia Medica 2022;47(8):2049-2055
The present study investigated the mechanism of the Tibetan medicine Ershiwuwei Songshi Pills(ESP) against the liver injury induced by acetaminophen(APAP) in mice based on the kelch-like ECH-associated protein 1(Keap1)/nuclear transcription factor E2 related factor 2(Nrf2) and Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB) p65 signaling pathways. Kunming mice were randomly divided into a blank control group, a model group, an N-acetyl-L-cysteine(NAC) group, and high-(400 mg·kg~(-1)), medium-(200 mg·kg~(-1)), and low-dose(100 mg·kg~(-1)) ESP groups. After 14 days of continuous administration, except for those in the control group, the mice were intraperitoneally injected with 200 mg·kg~(-1) APAP. After 12 h, the serum and liver tissues of mice were collected. Hematoxylin-eosin(HE) staining was performed on pathological sections of the liver, and the levels of aspartate aminotransferase(AST) and alanine aminotransferase(ALT) in the serum and the levels of glutathione(GSH), malondialdehyde(MDA), superoxide dismutase(SOD), catalase(CAT), myeloperoxidase(MPO), and total antioxidant capacity(T-AOC) in liver tissue homogenate were detected to observe and analyze the protective effect of ESP on APAP-induced liver injury in mice. The serum levels of tumor necrosis factor-alpha(TNF-α), interleukin-1 beta(IL-1β), and interleukin-6(IL-6) were determined by enzyme-linked immunosorbent assay(ELISA). The protein expression of Nrf2, Keap1, TLR4, and NF-κB p65 in the liver was determined by Western blot. Quantitative real-time was used to determine the mRNA expression of glutamate-cysteine ligase catalytic subunit(GCLC), glutamate-cysteine ligase regulatory subunit(GCLM), heme oxygenase-1(HO-1), and NAD(P)H dehydrogenase quinone 1(NQO-1) in the liver to explore the mechanism of ESP in improving APAP-induced liver damage in mice. As revealed by results, compared with the model group, the ESP groups showed improved liver pathological damage, decreased ALT and AST levels in the serum and MDA and MPO content in the liver, increased GSH, SOD, CAT, and T-AOC in the liver, reduced TNF-α and IL-6 levels in the serum, down-regulated expression of Keap1 in the liver cytoplasm and NF-κB p65 in the liver nucleus, up-regulated expression of Nrf2 in the liver nucleus, insignificant change in TLR4 expression, and elevated relative mRNA expression levels of antioxidant genes GCLC, GCLM, HO-1, and NQO-1. ESP can reduce the oxidative damage and inflammation caused by APAP, and the mechanism may be related to the Keap1/Nrf2 signaling pathway and the signal transduction factors on the TLR4/NF-κB p65 pathway.
Acetaminophen/toxicity*
;
Animals
;
Antioxidants/pharmacology*
;
Glutamate-Cysteine Ligase/pharmacology*
;
Glutathione
;
Interleukin-6/metabolism*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Liver
;
Medicine, Tibetan Traditional
;
Mice
;
NF-E2-Related Factor 2/metabolism*
;
NF-kappa B/metabolism*
;
RNA, Messenger/metabolism*
;
Signal Transduction
;
Superoxide Dismutase/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*

Result Analysis
Print
Save
E-mail