1.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
2.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
3.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
4.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
5.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
6.Celastrol directly targets LRP1 to inhibit fibroblast-macrophage crosstalk and ameliorates psoriasis progression.
Yuyu ZHU ; Lixin ZHAO ; Wei YAN ; Hongyue MA ; Wanjun ZHAO ; Jiao QU ; Wei ZHENG ; Chenyang ZHANG ; Haojie DU ; Meng YU ; Ning WAN ; Hui YE ; Yicheng XIE ; Bowen KE ; Qiang XU ; Haiyan SUN ; Yang SUN ; Zijun OUYANG
Acta Pharmaceutica Sinica B 2025;15(2):876-891
Psoriasis is an incurable chronic inflammatory disease that requires new interventions. Here, we found that fibroblasts exacerbate psoriasis progression by promoting macrophage recruitment via CCL2 secretion by single-cell multi-omics analysis. The natural small molecule celastrol was screened to interfere with the secretion of CCL2 by fibroblasts and improve the psoriasis-like symptoms in both murine and cynomolgus monkey models. Mechanistically, celastrol directly bound to the low-density lipoprotein receptor-related protein 1 (LRP1) β-chain and abolished its binding to the transcription factor c-Jun in the nucleus, which in turn inhibited CCL2 production by skin fibroblasts, blocked fibroblast-macrophage crosstalk, and ameliorated psoriasis progression. Notably, fibroblast-specific LRP1 knockout mice exhibited a significant reduction in psoriasis like inflammation. Taken together, from clinical samples and combined with various mouse models, we revealed the pathogenesis of psoriasis from the perspective of fibroblast-macrophage crosstalk, and provided a foundation for LRP1 as a novel potential target for psoriasis treatment.
7.Coronary Computed Tomographic Angiography-Derived Radiomics Combing CT-Fractional Flow Reserve for Detecting Hemodynamically Significant Coronary Artery Disease.
Yan YI ; Cheng XU ; Wei WU ; Ying-Qian GE ; Ke-Ting XU ; Xian-Bo YU ; Yi-Ning WANG
Acta Academiae Medicinae Sinicae 2025;47(4):542-549
Objective To develop a diagnostic model combining the CT angiography(CCTA)-derived myocardial radiomics signatures with the CT-derived fractional flow reserve(CT-FFR)based on coronary CCTA and investigate the diagnostic accuracy of the hybrid model for hemodynamically significant coronary artery disease(CAD).Methods The patients presenting stable angina pectoris,diagnosed with CAD,and clinically referred for CCTA examination and invasive coronary angiography were prospectively recruited.Radiomics features of the left ventricular myocardium were extracted from the three main perfusion territories demarcated according to the coronary blood supply.The extracted features were first selected by the minimum redundancy maximum relevance feature ranking method.A least absolute shrinkage and selection operator Logistic regression algorithm with leave-one-out cross-validation was then employed to construct a radiomics model.The CT-FFR value was generated for each blood vessel.The area under the receiver operating characteristics curve(AUC_ROC),sensitivity,and specificity were adopted to evaluate the performance of each model against the reference standard invasive coronary angiography/FFR.Results A total of 70 patients[42 men and 28 women;(61±10) years old] were included in this study and complemented CCTA examination,with 175 vessels and the corresponding myocardial territories undergoing invasive coronary angiography/FFR.A total of 1 656 specific radiomics parameters were extracted,from which 14 features were selected to establish the radiomics model.The AUC_ROC,sensitivity,and specificity were 0.797(95%CI=0.732-0.861),77.1%,and 73.7%for the radiomics model,0.892(95%CI=0.841-0.943),81.4%,and 88.8%for the CT-FFR model,and 0.928(95%CI=0.890-0.965),83.3%,and 88.4%for the hybrid model,respectively.The hybrid model outperformed the radiomics model and CT-FFR alone(P=0.040).Conclusions The radiomics signatures of the vessel-related myocardium from CCTA could provide incremental value to the diagnostic performance of CT-FFR and improve vessel-specific ischemia detection.The hybrid model combining CT-FFR with radiomics signatures is potentially feasible for improving the diagnostic accuracy for hemodynamically significant CAD.
Coronary Angiography/methods*
;
Tomography, X-Ray Computed
;
Humans
;
Hemodynamics
;
Coronary Artery Disease/diagnostic imaging*
;
Male
;
Female
;
Middle Aged
;
Aged
;
Radiomics
;
Angina Pectoris/diagnostic imaging*
;
China
;
Image Processing, Computer-Assisted
;
Coronary Vessels/diagnostic imaging*
8.HVPG minimally invasive era: exploration based on forearm venous approach
Jitao WANG ; Lei LI ; Meng NIU ; Qingliang ZHU ; Zhongwei ZHAO ; Kohei KOTANI ; Akira YAMAMOTO ; Haijun ZHANG ; Shuangxi LI ; Dan XU ; Ning KANG ; Xiaoguo LI ; Kunpeng ZHANG ; Jun SUN ; Fazong WU ; Hailong ZHANG ; Dengxiang LIU ; Muhan LYU ; Jiansong JI ; Norifumi KAWADA ; Ke XU ; Xiaolong QI
Chinese Journal of Hepatology 2024;32(1):35-39
Objective:The transjugular or transfemoral approach is used as a common method for hepatic venous pressure gradient (HVPG) measurement in current practice. This study aims to confirm the safety and effectiveness of measuring HVPG via the forearm venous approach.Methods:Prospective recruitment was conducted for patients with cirrhosis who underwent HVPG measurement via the forearm venous approach at six hospitals in China and Japan from September 2020 to December 2020. Patients' clinical baseline information and HVPG measurement data were collected. The right median cubital vein or basilic vein approach for all enrolled patients was selected. The HVPG standard process was used to measure pressure. Research data were analyzed using SPSS 22.0 statistical software. Quantitative data were used to represent medians (interquartile ranges), while qualitative data were used to represent frequency and rates. The correlation between two sets of data was analyzed using Pearson correlation analysis.Results:A total of 43 cases were enrolled in this study. Of these, 41 (95.3%) successfully underwent HVPG measurement via the forearm venous approach. None of the patients had any serious complications. The median operation time for HVPG detection via forearm vein was 18.0 minutes (12.3~38.8 minutes). This study confirmed that HVPG was positively closely related to Child-Pugh score ( r = 0.47, P = 0.002), albumin-bilirubin score ( r = 0.37, P = 0.001), Lok index ( r = 0.36, P = 0.02), liver stiffness ( r = 0.58, P = 0.01), and spleen stiffness ( r = 0.77, P = 0.01), while negatively correlated with albumin ( r = -0.42, P = 0.006). Conclusion:The results of this multi-centre retrospective study suggest that HVPG measurement via the forearm venous approach is safe and feasible.
9.Mechanism and potential of vitamin C supplementation in sarcopenia prevention and treatment
Xu LIU ; Bo CHEN ; Ke NING ; Xiaohong CHEN
Chinese Journal of Tissue Engineering Research 2024;28(27):4405-4412
BACKGROUND:Vitamin C,as an essential nutrient,has a wide range of biological effects and a variety of biological functions related to the pathogenesis of sarcopenia.Vitamin C supplementation is expected to be a novel prevention and treatment measure for sarcopenia. OBJECTIVE:To review recent research advances in the application of vitamin C in the pathogenesis and treatment of sarcopenia,and to discuss the potential role of vitamin C in the prevention and treatment of sarcopenia and possible mechanistic pathways based on published evidence. METHODS:The first author performed a computer search of PubMed,Web of Science,CNKI and other databases for relevant studies involving vitamin C in sarcopenia.The search keywords were"vitamin C,ascorbic acid,L-ascorbic acid,ascorbate,antioxidants,oxidative stress,sarcopenia,muscular atrophy,muscle weakness,muscle development,skeletal muscle regenerate,muscles,skeletal muscle"in English and Chinese,respectively.The search period was from each database inception to July 2023.After screening,85 articles were included for further review. RESULTS AND CONCLUSION:Ensuring adequate dietary vitamin C intake or maintaining normal circulating levels of vitamin C will help to reduce age-related muscle loss and decrease the prevalence of sarcopenia.In addition,vitamin C supplementation is also useful for improving skeletal muscle mass,strength and physical function with potential synergistic effects in exercise strategies for sarcopenia.The effects of vitamin C on sarcopenia may be via the following biological mechanisms:vitamin C limits the activation of the ubiquitin-proteasome pathway mainly by inhibiting oxidative stress and inflammatory responses in skeletal muscle,thus positively regulating protein metabolic homeostasis,and may enhance mitochondrial antioxidant defenses through its antioxidant effects to maintain healthy mitochondrial function.In addition,vitamin C affects myoblast proliferation,differentiation and myotube size,mainly by increasing the expression of myogenic regulatory factors and activating protein synthesis signaling pathways,which contribute to the promotion of muscle development as well as the repair and regeneration of damaged muscle tissue.The positive effects of vitamin C in sarcopenia need to be studied in large samples and with optimized designs for important influencing factors,such as the choice of supplementation dose and duration,the design of exercise prescription when vitamin C is combined with an exercise intervention,and the assessment of the redox status of the individual.It is recommended that future studies should be conducted in older patients with sarcopenia(<50 μmol/L)with suboptimal vitamin C status to investigate the efficacy of a combined intervention of long-term supplementation with 1 000 mg/d vitamin C(for 6 months or longer)with at least two or more types of multi-type combined exercise,with supplementation timed to take place at 1 hour after the end of the exercise,and with monitoring of markers of oxidative damage produced during the exercise such as malondialdehyde or protein hydroxyl levels were monitored.In conclusion,the optimal dose and timing of vitamin C supplementation for older adults with sarcopenia needs to be explored more,while the appropriate design of exercise prescriptions(especially the type and intensity of exercise)needs to be further determined.
10.Application of PSMA PET/CT in the diagnosis and treatment of localized or locally advanced prostate cancer
Ning XU ; Zhibin KE ; Jiayin CHEN
Journal of Modern Urology 2024;29(8):667-672
Prostate-specific membrane antigen positron emission tomography/computed tomography(PSMA PET/CT)is an emerging imaging technique applied in the diagnosis and treatment of localized or locally advanced prostate cancer.It can effectively avoid unnecessary biopsies,and PSMA PET/CT-guided targeted biopsy could significantly improve the detection rate of clinically significant prostate cancer(csPCa).The technology of PSMA PET-based multi-image fusion biopsy may be the emphasis in the research of prostate cancer diagnosis in future.Compared with traditional imaging techniques,PSMA PET/CT is advantageous in detecting lymph node metastasis.It can not only be used to predict the adverse pathological features,including Gleason score,positive surgical margin,and postoperative pathological upgrading,but also to evaluate the efficacy of neoadjuvant therapy,guide radiotherapy regimen,predict biochemical recurrence and detect recurrent lesions.Currently,more large-scale prospective studies are still needed to explore the application of PSMA PET/CT for localized or locally advanced prostate cancer.

Result Analysis
Print
Save
E-mail