1.Health literacy prediction models based on machine learning methods: a scoping review
PAN Xiang ; TONG Yingge ; LI Yixuan ; NI Ke ; CHENG Wenqian ; XIN Mengyu ; HU Yuying
Journal of Preventive Medicine 2025;37(2):148-153
Objective:
To conduct a scoping review on the types, construction methods and predictive performance of health literacy prediction models based on machine learning methods, so as to provide the reference for the improvement and application of such models.
Methods:
Publications on health literacy prediction models conducted using machine learning methods were retrieved from CNKI, Wanfang Data, VIP, PubMed and Web of Science from inception to May 1, 2024. The quality of literature was assessed using the Prediction Model Risk of Bias ASsessment Tool. Basic characteristics, modeling methods, data sources, missing value handling, predictors and predictive performance were reviewed.
Results:
A total of 524 publications were retrieved, and 22 publications between 2007 and 2024 were finally enrolled. Totally 48 health literacy prediction models were involved, and 25 had a high risk of bias (52.08%), with major issues focusing on missing value handling, predictor selection and model evaluation methods. Modeling methods included regression models, tree-based machine learning methods, support vector machines and neural network models. Predictors primarily encompassed factors at four aspects: individual, interpersonal, organizational and society/policy aspects, with age, educational level, economic status, health status and internet use appearing frequently. Internal validation was conducted in 14 publications, and external validation was conducted in 4 publications. Forty-two models reported the areas under the receiver operating characteristic curve, which ranged from 0.52 to 0.983, indicating good discrimination.
Conclusion
Health literacy prediction models based on machine learning methods perform well, but have deficiencies in risk of bias, data processing and validation.
2.Hearing loss prevalence and burden of disease in China: Findings from provincial-level analysis.
Yu WANG ; Yang XIE ; Minghao WANG ; Mengdan ZHAO ; Rui GONG ; Ying XIN ; Jia KE ; Ke ZHANG ; Shaoxing ZHANG ; Chen DU ; Qingchuan DUAN ; Fang WANG ; Tao PAN ; Furong MA ; Xiangyang HU
Chinese Medical Journal 2025;138(1):41-48
BACKGROUND:
Without timely and effective rehabilitation, hearing loss may profoundly affect human life quality. China has a large population of hearing-impaired individuals, which imposes a heavy health burden on society. Moreover, this population is projected to increase rapidly owing to China's aging society.
METHODS:
We used data from a population-representative epidemiological investigation of hearing loss and ear diseases in four Chinese provinces. We estimated the national prevalence using multiple linear regression of the age-group proportions and prevalence in 31 provinces with clustering analysis. We used years lived with disability (YLDs) to analyze the disease burden and forecasted the prevalence of hearing loss by 2060 in China.
RESULTS:
An estimated 115 million people had moderate-to-complete hearing loss in 2015 across the 31 provinces of China (8.4% of 1.37 billion people). Of these, 85.7% were older than age 50 years (99 million people) and 2.4% were younger than 20 years old (2.8 million people). Of all YLDs attributable to hearing loss, 68.9% were attributable to moderate-to-complete cases. By 2060, a projected 242 million people in China will have moderate-to-complete hearing loss, a 110.0% increase from 2015.
CONCLUSIONS
The hearing loss prevalence in China is high. Population aging and socioeconomic factors substantially affect the prevalence and severity of hearing loss and the disease burden. The prevalence and severity of hearing loss are unevenly distributed across different provinces. Future public health policies should take these trends and regional variations into account.
Humans
;
China/epidemiology*
;
Hearing Loss/epidemiology*
;
Prevalence
;
Middle Aged
;
Male
;
Female
;
Adult
;
Aged
;
Adolescent
;
Young Adult
;
Child
;
Child, Preschool
;
Infant
;
Aged, 80 and over
;
Cost of Illness
3.Fucoidan sulfate regulates Hmox1-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy.
Yu-Feng CAI ; Wei HU ; Yi-Gang WAN ; Yue TU ; Si-Yi LIU ; Wen-Jie LIU ; Liu-Yun-Xin PAN ; Ke-Jia WU
China Journal of Chinese Materia Medica 2025;50(9):2461-2471
This study explores the role and underlying molecular mechanisms of fucoidan sulfate(FPS) in regulating heme oxygenase-1(Hmox1)-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy(DCM) through in vivo and in vitro experiments and network pharmacology analysis. In vivo, a DCM rat model was established using a combination of "high-fat diet feeding + two low-dose streptozotocin(STZ) intraperitoneal injections". The rats were randomly divided into four groups: normal, model, FPS, and dapagliflozin(Dapa) groups. In vitro, a cellular model was created by inducing rat cardiomyocytes(H9c2 cells) with high glucose(HG), using zinc protoporphyrin(ZnPP), an Hmox1 inhibitor, as the positive control. An automatic biochemical analyzer was used to measure blood glucose(BG), serum aspartate aminotransferase(AST), serum lactate dehydrogenase(LDH), and serum creatine kinase-MB(CK-MB) levels. Echocardiography was used to assess rat cardiac function, including ejection fraction(EF) and fractional shortening(FS). Pathological staining was performed to observe myocardial morphology and fibrotic characteristics. DCFH-DA fluorescence probe was used to detect reactive oxygen species(ROS) levels in myocardial tissue. Specific assay kits were used to measure serum brain natriuretic peptide(BNP), myocardial Fe~(2+), and malondialdehyde(MDA) levels. Western blot(WB) was used to detect the expression levels of myosin heavy chain 7B(MYH7B), natriuretic peptide A(NPPA), collagens type Ⅰ(Col-Ⅰ), α-smooth muscle actin(α-SMA), ferritin heavy chain 1(FTH1), solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), 4-hydroxy-2-nonenal(4-HNE), and Hmox1. Immunohistochemistry(IHC) was used to examine Hmox1 protein expression patterns. FerroOrange and Highly Sensitive DCFH-DA fluorescence probes were used to detect intracellular Fe~(2+) and ROS levels. Transmission electron microscopy was used to observe changes in mitochondrial morphology. In network pharmacology, FPS targets were identified through the PubChem database and PharmMapper platform. DCM-related targets were integrated from OMIM, GeneCards, and DisGeNET databases, while ferroptosis-related targets were obtained from the FerrDb database. A protein-protein interaction(PPI) network was constructed for the intersection of these targets using STRING 11.0, and core targets were screened with Cytoscape 3.9.0. Molecular docking analysis was conducted using AutoDock and PyMOL 2.5. In vivo results showed that FPS significantly reduced AST, LDH, CK-MB, and BNP levels in DCM model rats, improved cardiac function, decreased the expression of myocardial injury proteins(MYH7B, NPPA, Col-Ⅰ, and α-SMA), alleviated myocardial hypertrophy and fibrosis, and reduced Fe~(2+), ROS, and MDA levels in myocardial tissue. Furthermore, FPS regulated the expression of ferroptosis-related markers(Hmox1, FTH1, SLC7A11, GPX4, and 4-HNE) to varying degrees. Network pharmacology results revealed 313 potential targets for FPS, 1 125 targets for DCM, and 14 common targets among FPS, DCM, and FerrDb. Hmox1 was identified as a key target, with FPS showing high docking activity with Hmox1. In vitro results demonstrated that FPS restored the expression levels of ferroptosis-related proteins, reduced intracellular Fe~(2+) and ROS levels, and alleviated mitochondrial structural damage in cardiomyocytes. In conclusion, FPS improves myocardial injury in DCM, with its underlying mechanism potentially involving the regulation of Hmox1 to inhibit ferroptosis. This study provides pharmacological evidence supporting the therapeutic potential of FPS for DCM-induced myocardial injury.
Animals
;
Ferroptosis/drug effects*
;
Rats
;
Diabetic Cardiomyopathies/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Polysaccharides/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Myocytes, Cardiac/metabolism*
;
Myocardium/pathology*
;
Humans
;
Cell Line
;
Heme Oxygenase (Decyclizing)
4.Type II Leydig cell hypoplasia caused by LHCGR gene mutation: a case report.
Ke-Xin JIN ; Zhe SU ; Yan-Hua JIAO ; Li-Li PAN ; Xian-Ping JIANG ; Jian-Chun YIN ; Jia-Qiang LI
Chinese Journal of Contemporary Pediatrics 2025;27(2):225-228
The patient, assigned female at birth and aged 1 year and 7 months, presented with clinical manifestations of 46,XY disorders of sex development. The external genitalia exhibited a severely undermasculinized phenotype. Laboratory tests and gonadal biopsy indicated poor Leydig cell function and good Sertoli cell function. Genetic testing revealed compound heterozygous mutations of c.867-2A>C and c.547G>A (p.G183R) in the LHCGR gene. The patient was ultimately diagnosed with type II Leydig cell hypoplasia. Type II Leydig cell hypoplasia presents a broad spectrum of clinical phenotypes, characterized by a lack of parallel function between Leydig cells and Sertoli cells, and significant individual variability in spermatogenesis and gender assignment. This condition should be considered when there is poor Leydig cell function but good development of Wolffian duct derivatives.
Female
;
Humans
;
Infant
;
Disorder of Sex Development, 46,XY/genetics*
;
Leydig Cells/pathology*
;
Mutation
;
Receptors, LH/genetics*
;
Testis/abnormalities*
5.Progress in research on health literate schools
Chinese Journal of School Health 2024;45(3):448-451
Abstract
Health literate schools (HeLit-Schools) play a significant role in fostering students health literacy. The paper elucidates the background and conceptual connotations of HeLit-Schools, and analyzes how HeLit-Schools effectively integrate and enhance the health literacy of schools in three aspects: philosophy and core drivers, strategy and method implementation, as well as evaluation mechanisms and standard setting. Furthermore, the paper explores the implications of foreign HeLit-Schools research and practice for China under the context of "Healthy China" construction, as well as the key strategies for Chinese schools in the implementation of HeLit-Schools, aiming to provide a new perspective and theoretical support for Chinese schools to practice the "Healthy China initiative" and strengthen school construction from the perspective of health literacy.
6.Research progress on food literacy assessment tools for children and adolescents
QIAN Jinwei, TONG Yingge, PAN Xiang, YAO Lan, NI Ke, XIN Mengyu, CHENG Wenqian, HU Yuying
Chinese Journal of School Health 2024;45(6):891-894
Abstract
As dietary issues of children and adolescents become increasingly complex, the assessment of food literacy (FL) is increasingly importance. FL involves a comprehensive cognition and practical ability concerning food among children, playing a key role in fostering healthy eating habits and improving health levels. The article explores the definition and connotations of FL, and introduces eight FL assessment tools in terms of theoretical foundations, dimensions, assessment methods, and their reliability and validity. Moreover, it provides a comparative analysis of these tools by examining their dimensional design, evaluation indicators, strengths, and weaknesses, as well as their applicable subjects and scenarios, aiming to offer references for implementing relevant policies and developing more comprehensive and effective FL assessment tools.
7.Molecular mechanism of luteolin against acute lung injury based on network pharmacology and molecular docking
Xue-Feng WANG ; Xin-Zhi PAN ; Ning CAO ; Ke-Yi SUN ; Dhar RANA ; Hui-Fang TANG
Chinese Pharmacological Bulletin 2024;40(8):1583-1591
Aim To explore the molecular mechanism of luteolin against acute lung injury by network phar-macology and molecular docking technology,and to conduct experimental verification.Methods The re-lated targets of luteolin were predicted by PubChem and Swiss Target Prediction databases.Acute lung in-jury-related targets were collected through the Gene-Cards database.Venny 2.1 was used to draw the Venn diagram,and the common targets of drug and disease were obtained.The protein interaction network(PPI)was established by String online platform,and the core targets were screened by Cytoscape 3.8.2 software.The functional enrichment analysis of Gene Ontology(GO)and pathway enrichment analysis of Kyoto Ency-clopedia of Gene and Genome(KEGG)were per-formed on the common targets using the DAVID data-base,and the results were visualized.Finally,molecu-lar docking was performed by Auto Dock software,and the molecular results were visualized by Pymol.The mouse acute lung injury model was constructed.HE staining was used to detect histopathology,and Western blot was used to detect lung tissue related proteins.Results After screening,85 common targets were ob-tained.Among them,the core targets were AKT1,EG-FR,SRC,MMP9,ESR1,PTGS2,etc.GO enrichment analysis obtained 265 biological processes,including signal transduction,protein phosphorylation,and nega-tive regulation of apoptosis.There were 48 cells,main-ly including plasma membrane,cell solute,cytoplasm,etc.There are 107 molecular functions,mainly inclu-ding ATP binding,protein serine/threonine/tyrosine ki-nase activity,protein kinase activity and so on.A total of 92 signaling pathway were obtained by KEGG path-way enrichment analysis,which mainly acted on PI3 K-AKT signaling pathway,ErbB signaling pathway,VEGF signaling pathway,etc.Molecular docking results showed that luteolin had good docking activity with core targets AKT1,EGFR,SRC,MMP9,ESR1,PTGS2,MMP2,GSK3 B,KDR and PARP1.The binding ener-gy of ERS1,GSK3B and MMP2 was lower than-5.0 kal·mol-1,and the affinity with luteolin was stronger.The pathological results of lung tissue showed that lute-olin could inhibit inflammatory infiltration and had a strong anti-inflammatory effect in LPS-induced acute lung injury model in mice.Western blot experiments showed that luteolin might alleviate the inflammatory response by inhibiting the phosphorylation of AKT.Conclusions Luteolin can play an anti-acute lung in-jury role through multi-target and multi-channel mecha-nisms,which may be closely related to the inhibition of AKT phosphorylation.
8.Effect of Cinobufacini on HepG2 cells based on CXCL5/FOXD1/VEGF pathway
Xiao-Ke RAN ; Xu-Dong LIU ; Hua-Zhen PANG ; Wei-Qiang TAN ; Tie-Xiong WU ; Zhao-Quan PAN ; Yuan YUAN ; Xin-Feng LOU
Chinese Pharmacological Bulletin 2024;40(12):2361-2368
Aim To investigate the impact of Cinobu-facini on the proliferation,invasion,and apoptosis of HepG2 cells and the underlying mechanism.Methods The proliferation of HepG2 cells was assessed using the CCK-8 method following treatment with Cinobufaci-ni.The invasion capability of HepG2 cells was evalua-ted through Transwell assay after exposure to Cinobufa-cini.The apoptosis rates of HepG2 cells post Cinobufa-cini intervention were measured using flow cytometry,and the expression levels of VEGF in the culture medi-um of HepG2 cells were determined using enzyme-linked immunoassay.Furthermore,qRT-PCR and Western blot analyses were conducted to assess the im-pact of Cinobufacini on mRNA and protein expression levels related to the CXCL5/FOXD1/VEGF pathway.The interaction between CXCL5 and FOXD1 was inves-tigated via co-immunoprecipitation.Results Cinobufa-cini treatment led to a gradual decrease in HepG2 cell viability in a dose-dependent manner compared to the control group(P<0.05).Moreover,Cinobufacini sig-nificantly suppressed HepG2 cell invasion(P<0.05)while enhancing cell apoptosis(P<0.05).Notably,Cinobufacini exhibited inhibitory effects on the CX-CL5/FOXD1/VEGF pathway,as evidenced by re-duced expression of related mRNA and proteins(P<0.05).FOXD1 was identified as the binding site of CXCL5.Overexpression of CXCL5 resulted in in-creased proliferation and VEGF secretion by HepG2 cells(P<0.05),and increased expression of FOXD1 and VEGF(P<0.05).However,Cinobufacini inter-vention effectively inhibited liver cancer cell prolifera-tion and invasion(P<0.05),promoted apoptosis(P<0.05),reduced VEGF secretion by HepG2 cells(P<0.05),and downregulated the expression of CXCL5 and FOXD1 in HepG2 cells(P<0.05);but com-pared with the unexpressed group of Cinobufacini,its ability to inhibit cell activity was weakened(P<0.05),and its ability to inhibit the expression of CX-CL5,FOXD1,and VEGF was weakened(P<0.05).Conclusion Cinobufacini may inhibit HepG2 cell pro-liferation and invasion and promote HepG2 cell apopto-sis by regulating the CXCL5/FOXD1/VEGF pathway.
9.Troubleshooting of TMC BC ROBO 6 intelligent blood collection system:3 case reports
Xiong-Yi HUANG ; Xiao-Xiao HE ; Ke-Xin PAN ; Ao-Wen DUAN ; Li XU ; Kai MAO
Chinese Medical Equipment Journal 2024;45(6):113-116
The working principle of TMC BC ROBO 6 intelligent blood collection system was described in brief.The causes of three faults during daily operation of the system were analyzed,and the countermeasures were put forward accordingly.References were provided for clinical engineers to treat similar faults.[Chinese Medical Equipment Journal,2024,45(6):113-116]
10.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.


Result Analysis
Print
Save
E-mail