1.Effect of Various Factors on Non-suicidal Self-injury in Adolescent Depression
Yi MIAO ; Junyi LI ; Peishan HUANG ; Ke WANG ; Xuelin ZHANG ; Qiangli DONG
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(1):123-131
ObjectiveTo investigate the non-suicidal self-injury (NSSI) behaviors in adolescents with depressive disorder, analyze related influencing factors, and provide theoretical basis and reference for the prevention and treatment of NSSI. MethodsAccording to DSM-5 criteria, 95 depressive adolescents were divided into two groups: one with NSSI (NSSI group) and one without NSSI (nNSSI group). All patients were assessed with Adolescent Non-suicidal Self-injury Assessment Questionnaire (ANSAQ), Self-Rating Depression Scale (SDS), Self-Rating Anxiety Scale (SAS), Simplified Coping Style Questionnaire (SCSQ), Experiences in Close Relationships-Relationship Structures Scale (ECR-RS), and Childhood Trauma Questionnaire-Short Form (CTQ-SF). The inter-group differences were compared. The influencing factors of NSSI were analyzed by using binary logistic regression. ResultsOf the 95 depressive adolescents, 59 cases of NSSI were identified, with a detection rate of 62.11%. NSSI group had higher scores than nNSSI group on SDS, SAS, negative coping style, paternal attachment anxiety, maternal attachment anxiety and avoidance, CTQ-SF total score, emotional neglect, physical neglect, emotional abuse, and sexual abuse (all P<0.05). Binary logistic regression analysis showed that anxiety, negative coping style, maternal attachment avoidance and emotional abuse increased the risk of NSSI among adolescents with depressive disorders (all P< 0.05). ConclusionsAdolescents with depression have a high incidence of NSSI behaviors, which is related to anxiety, negative coping style, maternal attachment avoidance and emotional abuse. In addition to improving patients' depression and anxiety in clinical setting, attention should also be paid to patients' coping styles, parent-child relationship and childhood trauma to reduce the occurrence of NSSI behaviors.
2.Molecular mechanism of Shenling Baizhu powder in treatment of cancer cachexia based on network pharmacology
Gang KE ; Qingke DONG ; Shirong XIAO ; Qian GONG ; Rong LI ; Daijie WANG
Journal of Pharmaceutical Practice and Service 2025;43(5):242-250
Objective To analyze the pharmacological mechanism of Shenling Baizhu powder in the treatment of cancer cachexia based on the network pharmacological method and provide a reference for the clinical application of classical traditional Chinese medicine(TCM) prescriptions. Methods Through TCMSP and BATMAN-TCM databases, the main chemical components and their targets of the TCM prescription of Shenling Baizhu powder were obtained, and the active components of the TCM were screened according to ADME. The main targets of cancer cachexia were obtained through OMIM, Genecards, Disgenet and DRUGBANK databases, and protein interaction analysis was conducted using String platform to build a PPI network. The “drug-active ingredient-target” network of Shenling Baizhu powder was constructed by Cytoscape 3.7.2 software, and then the biological processes and pathways involved were analyzed by using Metascape platform. Finally, molecular docking verification was conducted by Discovery Studio. Results The core active ingredients of Shenling Baizhu powder in the treatment of cancer cachexia were quercetin, kaempferol, pyrolignous acid, stigmasterol, luteolin, β-sitosterol, etc. The core targets were AKT1, TP53, TNF, IL-6, MAPK3, CASP3, JUN, CTNNB1, HIF1A, EGFR, etc. The molecular docking test also showed that the top 10 active ingredients, such as pyrolignous acid, stigmasterol and β-sitosterol, had good binding activities with most of the target sites. The biological pathway of Shenling Baizhu powder in treating cancer cachexia wss mainly to regulate tumor related pathway, metabolism related pathway, inflammatory factors and appetite related pathway. Conclusion This study preliminarily revealed the mechanism of action of Shenling Baizhu powder in treating cancer cachexia with multi components, multi targets and multi pathways, which provided a basis for the clinical development and utilization of Shenling Baizhu powder.
3.Neuroplasticity Mechanisms of Exercise-induced Brain Protection
Li-Juan HOU ; Lan-Qun MAO ; Wei CHEN ; Ke LI ; Xu-Dong ZHAO ; Yin-Hao WANG ; Zi-Zheng YANG ; Tian-He WEI
Progress in Biochemistry and Biophysics 2025;52(6):1435-1452
Neuroscience is a significant frontier discipline within the natural sciences and has become an important interdisciplinary frontier scientific field. Brain is one of the most complex organs in the human body, and its structural and functional analysis is considered the “ultimate frontier” of human self-awareness and exploration of nature. Driven by the strategic layout of “China Brain Project”, Chinese scientists have conducted systematic research focusing on “understanding the brain, simulating the brain, and protecting the brain”. They have made breakthrough progress in areas such as the principles of brain cognition, mechanisms and interventions for brain diseases, brain-like computation, and applications of brain-machine intelligence technology, aiming to enhance brain health through biomedical technology and improve the quality of human life. Due to limited understanding and comprehension of neuroscience, there are still many important unresolved issues in the field of neuroscience, resulting in a lack of effective measures to prevent and protect brain health. Therefore, in addition to actively developing new generation drugs, exploring non pharmacological treatment strategies with better health benefits and higher safety is particularly important. Epidemiological data shows that, exercise is not only an indispensable part of daily life but also an important non-pharmacological approach for protecting brain health and preventing neurodegenerative diseases, forming an emerging research field known as motor neuroscience. Basic research in motor neuroscience primarily focuses on analyzing the dynamic coding mechanisms of neural circuits involved in motor control, breakthroughs in motor neuroscience research depend on the construction of dynamic monitoring systems across temporal and spatial scales. Therefore, high spatiotemporal resolution detection of movement processes and movement-induced changes in brain structure and neural activity signals is an important technical foundation for conducting motor neuroscience research and has developed a set of tools based on traditional neuroscience methods combined with novel motor behavior decoding technologies, providing an innovative technical platform for motor neuroscience research. The protective effect of exercise in neurodegenerative diseases provides broad application prospects for its clinical translation. Applied research in motor neuroscience centers on deciphering the regulatory networks of neuroprotective molecules mediated by exercise. From the perspectives of exercise promoting neurogenesis and regeneration, enhancing synaptic plasticity, modulating neuronal functional activity, and remodeling the molecular homeostasis of the neuronal microenvironment, it aims to improve cognitive function and reduce the incidence of Parkinson’s disease and Alzheimer’s disease. This has also advanced research into the molecular regulatory networks mediating exercise-induced neuroprotection and facilitated the clinical application and promotion of exercise rehabilitation strategies. Multidimensional analysis of exercise-regulated neural plasticity is the theoretical basis for elucidating the brain-protective mechanisms mediated by exercise and developing intervention strategies for neurological diseases. Thus,real-time analysis of different neural signals during active exercise is needed to study the health effects of exercise throughout the entire life cycle and enhance lifelong sports awareness. Therefore, this article will systematically summarize the innovative technological developments in motor neuroscience research, review the mechanisms of neural plasticity that exercise utilizes to protect the brain, and explore the role of exercise in the prevention and treatment of major neurodegenerative diseases. This aims to provide new ideas for future theoretical innovations and clinical applications in the field of exercise-induced brain protection.
4.The Regulatory Mechanisms of Dopamine Homeostasis in Behavioral Functions Under Microgravity
Xin YANG ; Ke LI ; Ran LIU ; Xu-Dong ZHAO ; Hua-Lin WANG ; Lan-Qun MAO ; Li-Juan HOU
Progress in Biochemistry and Biophysics 2025;52(8):2087-2102
As China accelerates its efforts in deep space exploration and long-duration space missions, including the operationalization of the Tiangong Space Station and the development of manned lunar missions, safeguarding astronauts’ physiological and cognitive functions under extreme space conditions becomes a pressing scientific imperative. Among the multifactorial stressors of spaceflight, microgravity emerges as a particularly potent disruptor of neurobehavioral homeostasis. Dopamine (DA) plays a central role in regulating behavior under space microgravity by influencing reward processing, motivation, executive function and sensorimotor integration. Changes in gravity disrupt dopaminergic signaling at multiple levels, leading to impairments in motor coordination, cognitive flexibility, and emotional stability. Microgravity exposure induces a cascade of neurobiological changes that challenge dopaminergic stability at multiple levels: from the transcriptional regulation of DA synthesis enzymes and the excitability of DA neurons, to receptor distribution dynamics and the efficiency of downstream signaling pathways. These changes involve downregulation of tyrosine hydroxylase in the substantia nigra, reduced phosphorylation of DA receptors, and alterations in vesicular monoamine transporter expression, all of which compromise synaptic DA availability. Experimental findings from space analog studies and simulated microgravity models suggest that gravitational unloading alters striatal and mesocorticolimbic DA circuitry, resulting in diminished motor coordination, impaired vestibular compensation, and decreased cognitive flexibility. These alterations not only compromise astronauts’ operational performance but also elevate the risk of mood disturbances and motivational deficits during prolonged missions. The review systematically synthesizes current findings across multiple domains: molecular neurobiology, behavioral neuroscience, and gravitational physiology. It highlights that maintaining DA homeostasis is pivotal in preserving neuroplasticity, particularly within brain regions critical to adaptation, such as the basal ganglia, prefrontal cortex, and cerebellum. The paper also discusses the dual-edged nature of DA plasticity: while adaptive remodeling of synapses and receptor sensitivity can serve as compensatory mechanisms under stress, chronic dopaminergic imbalance may lead to maladaptive outcomes, such as cognitive rigidity and motor dysregulation. Furthermore, we propose a conceptual framework that integrates homeostatic neuroregulation with the demands of space environmental adaptation. By drawing from interdisciplinary research, the review underscores the potential of multiple intervention strategies including pharmacological treatment, nutritional support, neural stimulation techniques, and most importantly, structured physical exercise. Recent rodent studies demonstrate that treadmill exercise upregulates DA transporter expression in the dorsal striatum, enhances tyrosine hydroxylase activity, and increases DA release during cognitive tasks, indicating both protective and restorative effects on dopaminergic networks. Thus, exercise is highlighted as a key approach because of its sustained effects on DA production, receptor function, and brain plasticity, making it a strong candidate for developing effective measures to support astronauts in maintaining cognitive and emotional stability during space missions. In conclusion, the paper not only underscores the centrality of DA homeostasis in space neuroscience but also reflects the authors’ broader academic viewpoint: understanding the neurochemical substrates of behavior under microgravity is fundamental to both space health and terrestrial neuroscience. By bridging basic neurobiology with applied space medicine, this work contributes to the emerging field of gravitational neurobiology and provides a foundation for future research into individualized performance optimization in extreme environments.
5.Analysis of The Characteristics of Brain Functional Activity in Gross Motor Tasks in Children With Autism Based on Functional Near-infrared Spectroscopy Technology
Wen-Hao ZONG ; Qi LIANG ; Shi-Yu YANG ; Feng-Jiao WANG ; Meng-Zhao WEI ; Hong LEI ; Gui-Jun DONG ; Ke-Feng LI
Progress in Biochemistry and Biophysics 2025;52(8):2146-2162
ObjectiveBased on functional near-infrared spectroscopy (fNIRS), we investigated the brain activity characteristics of gross motor tasks in children with autism spectrum disorder (ASD) and motor dysfunctions (MDs) to provide a theoretical basis for further understanding the mechanism of MDs in children with ASD and designing targeted intervention programs from a central perspective. MethodsAccording to the inclusion and exclusion criteria, 48 children with ASD accompanied by MDs were recruited into the ASD group and 40 children with typically developing (TD) into the TD group. The fNIRS device was used to collect the information of blood oxygen changes in the cortical motor-related brain regions during single-handed bag throwing and tiptoe walking, and the differences in brain activation and functional connectivity between the two groups of children were analyzed from the perspective of brain activation and functional connectivity. ResultsCompared to the TD group, in the object manipulative motor task (one-handed bag throwing), the ASD group showed significantly reduced activation in both left sensorimotor cortex (SMC) and right secondary visual cortex (V2) (P<0.05), whereas the right pre-motor and supplementary motor cortex (PMC&SMA) had significantly higher activation (P<0.01) and showed bilateral brain region activity; in terms of brain functional integration, there was a significant decrease in the strength of brain functional connectivity (P<0.05) and was mainly associated with dorsolateral prefrontal cortex (DLPFC) and V2. In the body stability motor task (tiptoe walking), the ASD group had significantly higher activation in motor-related brain regions such as the DLPFC, SMC, and PMC&SMA (P<0.05) and showed bilateral brain region activity; in terms of brain functional integration, the ASD group had lower strength of brain functional connectivity (P<0.05) and was mainly associated with PMC&SMA and V2. ConclusionChildren with ASD exhibit abnormal brain functional activity characteristics specific to different gross motor tasks in object manipulative and body stability, reflecting insufficient or excessive compensatory activation of local brain regions and impaired cross-regions integration, which may be a potential reason for the poorer gross motor performance of children with ASD, and meanwhile provides data support for further unraveling the mechanisms underlying the occurrence of MDs in the context of ASD and designing targeted intervention programs from a central perspective.
6.Arsenic trioxide preconditioning attenuates hepatic ischemia- reperfusion injury in mice: Role of ERK/AKT and autophagy.
Chaoqun WANG ; Hongjun YU ; Shounan LU ; Shanjia KE ; Yanan XU ; Zhigang FENG ; Baolin QIAN ; Miaoyu BAI ; Bing YIN ; Xinglong LI ; Yongliang HUA ; Zhongyu LI ; Dong CHEN ; Bangliang CHEN ; Yongzhi ZHOU ; Shangha PAN ; Yao FU ; Hongchi JIANG ; Dawei WANG ; Yong MA
Chinese Medical Journal 2025;138(22):2993-3003
BACKGROUND:
Arsenic trioxide (ATO) is indicated as a broad-spectrum medicine for a variety of diseases, including cancer and cardiac disease. While the role of ATO in hepatic ischemia/reperfusion injury (HIRI) has not been reported. Thus, the purpose of this study was to identify the effects of ATO on HIRI.
METHODS:
In the present study, we established a 70% hepatic warm I/R injury and partial hepatectomy (30% resection) animal models in vivo and hepatocytes anoxia/reoxygenation (A/R) models in vitro with ATO pretreatment and further assessed liver function by histopathologic changes, enzyme-linked immunosorbent assay, cell counting kit-8, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Small interfering RNA (siRNA) for extracellular signal-regulated kinase (ERK) 1/2 was transfected to evaluate the role of ERK1/2 pathway during HIRI, followed by ATO pretreatment. The dynamic process of autophagic flux and numbers of autophagosomes were detected by green fluorescent protein-monomeric red fluorescent protein-LC3 (GFP-mRFP-LC3) staining and transmission electron microscopy.
RESULTS:
A low dose of ATO (0.75 μmol/L in vitro and 1 mg/kg in vivo ) significantly reduced tissue necrosis, inflammatory infiltration, and hepatocyte apoptosis during the process of hepatic I/R. Meanwhile, ATO obviously promoted the ability of cell proliferation and liver regeneration. Mechanistically, in vitro studies have shown that nontoxic concentrations of ATO can activate both ERK and phosphoinositide 3-kinase-serine/threonine kinase (PI3K-AKT) pathways and further induce autophagy. The hepatoprotective mechanism of ATO, at least in part, relies on the effects of ATO on the activation of autophagy, which is ERK-dependent.
CONCLUSION
Low, non-toxic doses of ATO can activate ERK/PI3K-AKT pathways and induce ERK-dependent autophagy in hepatocytes, protecting liver against I/R injury and accelerating hepatocyte regeneration after partial hepatectomy.
Animals
;
Arsenic Trioxide
;
Autophagy/physiology*
;
Reperfusion Injury/prevention & control*
;
Mice
;
Male
;
Proto-Oncogene Proteins c-akt/physiology*
;
Arsenicals/therapeutic use*
;
Oxides/therapeutic use*
;
Liver/metabolism*
;
Extracellular Signal-Regulated MAP Kinases/metabolism*
;
Mice, Inbred C57BL
7.Evidence mapping of clinical research on traditional Chinese medicine in treatment of renal anemia.
Ke-Xin ZHANG ; Xin LI ; Kai-Li CHEN ; Peng-Tao DONG ; Lu-Yao SHI ; Lin-Qi ZHANG
China Journal of Chinese Materia Medica 2025;50(12):3413-3422
Through evidence mapping, this paper systematically summarized the research evidence on the use of traditional Chinese medicine(TCM) in treating renal anemia, displaying the distribution of evidence in this field. A systematic search was conducted across databases, including CNKI, Wanfang, VIP, SinoMed, Springner, PubMed, Engineering Village, and Web of Science, targeting studies published up to June 30, 2024. The research evidence was summarized and displayed through a combination of graphs, tables, and text. A total of 264 interventional studies, 37 observational studies, and 7 systematic reviews were included. The annual publication volumes related to TCM treatment in renal anemia showed an overall upward trend, with most studies involving sample sizes between 60 and 120 participants(224 articles, 74.42%). Intervention measures were categorized into 21 types, with oral TCM decoctions being the most common medicine(171 times, 56.81%). The use of self-made prescriptions was the most common TCM intervention method. The intervention duration was mainly between 8 weeks and 3 months(239 articles, 79.40%). The most frequently reported TCM syndrome was spleen and kidney Qi deficiency. The top 2 outcome indicators were the anemia indicators and renal injury/renal function markers. However, several issues were identified in these studies, such as insufficient attention to the sources, social/geographical information, and temporal continuity of research subjects in observational research. Randomized controlled trials mostly had a high risk of bias, mainly due to issues such as randomization bias, blinding bias, and failure to register research protocols. The methodology quality of systematic reviews was generally low, mainly due to inadequate inclusion of literature, failure to specify funding sources, and lack of pre-registrations. While the report quality of systematic review was acceptable, there were significant gaps in the reporting of protocols, registration, and funds. The results show that these issues affect the quality of research and the reliability of findings on TCM in treating renal anemia, underscoring the need to address them to conduct higher-quality research and provide more reliable medical evidence for TCM in treating renal anemia.
Humans
;
Anemia/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Kidney Diseases/drug therapy*
8.Mechanism of isorhamnetin in alleviating acute lung injury by regulating pyroptosis medicated by NLRP3/ASC/caspase-1 axis.
Ya-Lei SUN ; Yu GUO ; Xin-Yu WANG ; Ya-Su ZHANG ; Xue CHENG ; Ke ZHU ; Li-Dian CHEN ; Xiao-Dong FENG
China Journal of Chinese Materia Medica 2025;50(15):4120-4128
This study aims to explore the intervention effects of isorhamnetin(Isor) on acute lung injury(ALI) and its regulatory effects on pyroptosis mediated by the NOD-like receptor family pyrin domain containing 3(NLRP3)/apoptosis-associated speck-like protein containing a CARD(ASC)/cysteine aspartate-specific protease-1(caspase-1) axis. In the in vivo experiments, 60 BALB/c mice were divided into five groups. Except for the control group, the other groups were administered Isor by gavage 1 hour before intratracheal instillation of LPS to induce ALI, and tissues were collected after 12 hours. In the in vitro experiments, RAW264.7 cells were divided into five groups. Except for the control group, the other groups were pretreated with Isor for 2 hours before LPS stimulation and subsequent assessments. Hematoxylin-eosin(HE) staining was used to observe pathological changes in lung tissue, while lung swelling, protein levels in bronchoalveolar lavage fluid(BALF), and myeloperoxidase(MPO) levels in lung tissue were measured. Cell proliferation toxicity and viability were assessed using the cell counting kit-8(CCK-8) method. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of interleukin-1β(IL-1β), IL-6, IL-18, and tumor necrosis factor-α(TNF-α). Protein levels of NLRP3, ASC, cleaved caspase-1, and the N-terminal fragment of gasdermin D(GSDMD-N) were evaluated using immunohistochemistry, immunofluorescence, and Western blot. The results showed that in the in vivo experiments, Isor significantly improved pathological damage in lung tissue, reduced lung swelling, protein levels in BALF, MPO levels in lung tissue, and levels of inflammatory cytokines such as IL-1β, IL-6, IL-18, and TNF-α, and inhibited the high expression of the NLRP3/ASC/caspase-1 axis and the pyroptosis core gene GSDMD-N. In the in vitro experiments, the safe dose of Isor was determined through cell proliferation toxicity assays. Isor reduced cell death and inhibited the expression levels of the NLRP3/ASC/caspase-1 axis, GSDMD-N, and inflammatory cytokines. In conclusion, Isor may alleviate ALI by modulating pyroptosis mediated by the NLRP3/ASC/caspase-1 axis.
Animals
;
Pyroptosis/drug effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Acute Lung Injury/physiopathology*
;
Mice
;
Mice, Inbred BALB C
;
Quercetin/pharmacology*
;
Caspase 1/genetics*
;
CARD Signaling Adaptor Proteins/genetics*
;
Male
;
RAW 264.7 Cells
;
Humans
;
Lung/metabolism*
9.Preliminary application of human-computer interaction CT imaging AI recognition and positioning technology in the treatment of type C1 distal radius fractures.
Yong-Zhong CHENG ; Xiao-Dong YIN ; Fei LIU ; Xin-Heng DENG ; Chao-Lu WANG ; Shu-Ke CUI ; Yong-Yao LI ; Wei YAN
China Journal of Orthopaedics and Traumatology 2025;38(1):31-40
OBJECTIVE:
To explore the accuracy of human-computer interaction software in identifying and locating type C1 distal radius fractures.
METHODS:
Based on relevant inclusion and exclusion criteria, 14 cases of type C1 distal radius fractures between September 2023 and March 2024 were retrospectively analyzed, comprising 3 males and 11 females(aged from 27 to 82 years). The data were assigned randomized identifiers. A senior orthopedic physician reviewed the films and measured the ulnar deviation angle, radial height, palmar inclination angle, intra-articular step, and intra-articular gap for each case on the hospital's imaging system. Based on the reduction standard for distal radius fractures, cases were divided into reduction group and non-reduction group. Then, the data were sequentially imported into a human-computer interaction intelligent software, where a junior orthopedic physician analyzed the same radiological parameters, categorized cases, and measured fracture details. The categorization results from the software were consistent with manual classifications (6 reduction cases and 8 non-reduction cases). For non-reduction cases, the software performed further analyses, including bone segmentation and fracture recognition, generating 8 diagnostic reports containing fracture recognition information. For the 6 reduction cases, the senior and junior orthopedic physicians independently analyzed the data on the hospital's imaging system and the AI software, respectively. Bone segments requiring reduction were identified, verified by two senior physicians, and measured for displacement and rotation along the X (inward and outward), Z (front and back), and Y (up and down) axes. The AI software generated comprehensive diagnostic reports for these cases, which included all measurements and fracture recognition details.
RESULTS:
Both the manual and AI software methods consistently categorized the 14 cases into 6 reduction and 8 non-reduction groups, with identical data distributions. A paired sample t-test revealed no statistically significant differences (P>0.05) between the manual and software-based measurements for ulnar deviation angle, radial ulnar bone height, palmar inclination angle, intra-articular step, and joint space. In fracture recognition, the AI software correctly identified 10 C-type fractures and 4 B-type fractures. For the 6 reduction cases, a total of 24 bone fragments were analyzed across both methods. After verification, it was found that the bone fragments identified by the two methods were consistent. A paired sample t-tests revealed that the identified bone fragments and measured displacement and rotation angles along the X, Y, and Z axes were consistent between the two methods. No statistically significant differences(P>0.05) were found between manual and software measurements for these parameters.
CONCLUSION
Human-computer interaction software employing AI technology demonstrated comparable accuracy to manual measurement in identifying and locating type C1 distal radius fractures on CT imaging.
Humans
;
Male
;
Female
;
Radius Fractures/surgery*
;
Middle Aged
;
Adult
;
Aged
;
Aged, 80 and over
;
Tomography, X-Ray Computed/methods*
;
Retrospective Studies
;
Software
;
Wrist Fractures
10.Diagnosis of mucormycosis in three children following hematopoietic stem cell transplantation using metagenomic next-generation sequencing.
Yue LI ; Xiao-Hui ZHOU ; Xiao-Dong WANG ; Chun-Jing WANG ; Ke CAO ; Si-Xi LIU
Chinese Journal of Contemporary Pediatrics 2025;27(2):219-224
This article reports the clinical characteristics and treatment processes of three cases of mucormycosis occurring after hematopoietic stem cell transplantation in children, along with a review of relevant literature. All three patients presented with chest pain as the initial symptom, and metagenomic next-generation sequencing (mNGS) confirmed the mucycete infection early in all cases. Two patients recovered after treatment, while one succumbed to disseminated infection. mNGS has facilitated early diagnosis and treatment, reducing mortality rates. Additionally, surgical intervention is an important strategy for improving the prognosis of this condition.
Humans
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Mucormycosis/etiology*
;
Male
;
High-Throughput Nucleotide Sequencing/methods*
;
Child
;
Female
;
Metagenomics
;
Child, Preschool

Result Analysis
Print
Save
E-mail