1.The Ameliorate Effect of Piezo1 Signaling Pathway on Diabetes Mellitus Type 2 in Exercise Intervention
Progress in Biochemistry and Biophysics 2025;52(2):290-298
Diabetes mellitus type 2 (T2DM) is one of the most common metabolic diseases in the world and has a significant impact on the health of patients. As a key factor in cellular mechanical transduction, Piezo1 protein plays a crucial role in regulating the basic life activities of the body. By participating in energy metabolism, it not only promotes the improvement of basic metabolic rate, but also helps to maintain the stability of the internal environment of the body. The activation of Piezo1 pathway has a significant effect on the release of insulin by islet beta cells, and also plays an important role in the production of adipose tissue after food intake. This study reviews the effects of exercise intervention on the expression and function of Piezo1 protein, as well as its role in metabolic regulation and insulin level regulation in T2DM patients. The study showed that a modest exercise intervention activated Piezo1 signaling pathway, which improved insulin sensitivity and improved sugar metabolism. In addition, the activation of Piezo1 pathway is closely related to the metabolic regulation of adipose tissue, helping to regulate the differentiation and maturation of adipose cells, thereby affecting the metabolic function of adipose tissue. Based on a comprehensive analysis of existing literature, Piezo1 pathway is found to play a complex role in the pathogenesis of T2DM. Exercise intervention, as a non-drug therapy, provides a new strategy for the treatment of T2DM by activating Piezo1 signaling pathway. However, the exact mechanism of action of Piezo1 pathway in T2DM still needs further investigation. Future studies should focus on the interaction between the Piezo1 pathway and T2DM, and how to regulate the Piezo1 pathway to optimize treatment for T2DM. The effects of exercise intervention on Piezo1 protein and its role in metabolic regulation and insulin level regulation of T2DM patients were comprehensively analyzed in this paper, aiming to provide a new perspective for further research and development of therapeutic strategies for metabolic diseases such as diabetes and obesity.
2.Research on The Role of Dopamine in Regulating Sleep and Wakefulness Through Exercise
Li-Juan HOU ; Ya-Xuan GENG ; Ke LI ; Zhao-Yang HUANG ; Lan-Qun MAO
Progress in Biochemistry and Biophysics 2025;52(1):88-98
Sleep is an instinctive behavior alternating awakening state, sleep entails many active processes occurring at the cellular, circuit and organismal levels. The function of sleep is to restore cellular energy, enhance immunity, promote growth and development, consolidate learning and memory to ensure normal life activities. However, with the increasing of social pressure involved in work and life, the incidence of sleep disorders (SD) is increasing year by year. In the short term, sleep disorders lead to impaired memory and attention; in the longer term, it produces neurological dysfunction or even death. There are many ways to directly or indirectly contribute to sleep disorder and keep the hormones, including pharmacological alternative treatments, light therapy and stimulus control therapy. Exercise is also an effective and healthy therapeutic strategy for improving sleep. The intensities, time periods, and different types of exercise have different health benefits for sleep, which can be found through indicators such as sleep quality, sleep efficiency and total sleep time. So it is more and more important to analyze the mechanism and find effective regulation targets during sleep disorder through exercise. Dopamine (DA) is an important neurotransmitter in the nervous system, which not only participates in action initiation, movement regulation and emotion regulation, but also plays a key role in the steady-state remodeling of sleep-awakening state transition. Appreciable evidence shows that sleep disorder on humans and rodents evokes anomalies in the dopaminergic signaling, which are also implicated in the development of psychiatric illnesses such as schizophrenia or substance abuse. Experiments have shown that DA in different neural pathways plays different regulatory roles in sleep behavior, we found that increasing evidence from rodent studies revealed a role for ventral tegmental area DA neurons in regulating sleep-wake patterns. DA signal transduction and neurotransmitter release patterns have complex interactions with behavioral regulation. In addition, experiments have shown that exercise causes changes in DA homeostasis in the brain, which may regulate sleep through different mechanisms, including cAMP response element binding protein signal transduction, changes in the circadian rhythm of biological clock genes, and interactions with endogenous substances such as adenosine, which affect neuronal structure and play a neuroprotective role. This review aims to introduce the regulatory effects of exercise on sleep disorder, especially the regulatory mechanism of DA in this process. The analysis of intracerebral DA signals also requires support from neurophysiological and chemical techniques. Our laboratory has established and developed an in vivo brain neurochemical analysis platform, which provides support for future research on the regulation of sleep-wake cycles by movement. We hope it can provide theoretical reference for the formulation of exercise prescription for clinical sleep disorder and give some advice to the combined intervention of drugs and exercise.
3.Huotan Jiedu Tongluo Decoction inhibits ferroptosis by regulating Nrf2/GPX4 pathway to ameliorate atherosclerotic lesions in ApoE~(-/-) mice.
Di GAO ; Teng-Hui TIAN ; Ke-Ying YU ; Xiao SHAO ; Wen XUE ; Zhi-Xuan ZHAO ; Yue DENG
China Journal of Chinese Materia Medica 2025;50(7):1908-1919
The purpose of this study was to clarify the effect of Huotan Jiedu Tongluo Decoction on atherosclerosis(AS) injury in ApoE~(-/-) mice by regulating the ferroptosis pathway. Seventy-five ApoE~(-/-) mice were randomly divided into model group, low-, medium-, and high-dose of Huotan Jiedu Tongluo Decoction groups, and evolocumab group(n=15), and 15 C57BL/6J mice were selected as the blank group. Mice in the blank group were fed with a normal diet, and those in the other groups were fed with a high-fat diet to induce AS. From the 9th week, mice in Huotan Jiedu Tongluo Decoction groups were administrated with Huotan Jiedu Tongluo Decoction at corresponding doses by gavage, and those in the blank group and the model group were given an equal volume of distilled water. Mice in the evolocumab group were treated with evolocumab 18.2 mg·kg~(-1 )by subcutaneous injection every 2 weeks. After 8 weeks of continuous intervention, oil red O staining and hematoxylin-eosin(HE) staining were employed to observe the lipid deposition and plaque formation in the aortic root. Masson staining was used to evaluate the collagen content in the aortic root. The serum levels of total cholesterol(TC), triglycerides(TG), high-density lipoprotein cholesterol(HDL-C), and low-density lipoprotein cholesterol(LDL-C) were determined by biochemical kits. The levels of Fe~(2+), superoxide dismutase(SOD), malondialdehyde(MDA), and glutathione(GSH) in the aorta were measured by colorimetry. The protein and mRNA levels of nuclear factor erythroid 2-related factor 2(Nrf2), glutathione peroxidase 4(GPX4), solute carrier family 7 member 11(SLC7A11), and acyl-CoA synthetase long chain family member 4(ACSL4) in the aorta were detected by Western blot and RT-qPCR, respectively. The expression of Nrf2, GPX4, and SLC7A11 was localized by immunofluorescence. The results showed that low-, medium-, and high-dose Huotan Jiedu Tongluo Decoction reduced the plaque formation of aortic root and increased the collagen content in AS mice. At the same time, Huotan Jiedu Tongluo Decoction improved the lipid metabolism by lowering the levels of TC, LDL-C, and TG and elevating the level of HDL-C in the serum. Huotan Jiedu Tongluo Decoction enhanced the antioxidant capacity by elevating the levels of GSH and SOD and lowering the level of MDA in the aorta and inhibiting the accumulation of Fe~(2+) in the aorta. In addition, Huotan Jiedu Tongluo Decoction up-regulated the protein and mRNA levels of Nrf2, GPX4, and SLC7A11, while down-regulating the protein and mRNA levels of ACSL4. In summary, Huotan Jiedu Tongluo Decoction can effectively alleviate AS lesions in ApoE~(-/-) mice by activating the Nrf2/GPX4 pathway, reducing lipid peroxidation, and inhibiting ferroptosis.
Animals
;
Ferroptosis/drug effects*
;
Atherosclerosis/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
NF-E2-Related Factor 2/genetics*
;
Mice
;
Mice, Inbred C57BL
;
Apolipoproteins E/metabolism*
;
Male
;
Phospholipid Hydroperoxide Glutathione Peroxidase/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Mice, Knockout
4.Banxia Xiexin Decoction reshapes tryptophan metabolism to inhibit progression of colon cancer.
Yi-Fang JIANG ; Yu-Qing HUANG ; Heng-Zhou LAI ; Xue-Ke LI ; Liu-Yi LONG ; Feng-Ming YOU ; Qi-Xuan KUANG
China Journal of Chinese Materia Medica 2025;50(5):1310-1320
This study explores the effect and mechanism of Banxia Xiexin Decoction(BXD) in inhibiting colon cancer progression by reshaping tryptophan metabolism. Balb/c mice were assigned into control, model, low-dose BXD(BXD-L), and high-dose BXD(BXD-H) groups. Except the control group, the other groups were subcutaneously injected with CT26-Luc cells for the modeling of colon cancer, which was followed by the intervention with BXD. Small animal live imaging was employed to monitor tumor growth, and the tumor volume and weight were measured. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in mouse tumors. Immunohistochemistry was used to detect Ki67 expression in tumors. Immunofluorescence and flow cytometry were used to detect the infiltration and number changes of CD3~+/CD8~+ T cells in the tumor tissue. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of interferon-gamma(IFN-γ) and interleukin-2(IL-2) in tumors. Targeted metabolomics was employed to measure the level of tryptophan(Trp) in the serum, and the Trp content in the tumor tissue was measured. Western blot and RT-qPCR were employed to determine the protein and mRNA levels, respectively, of indoleamine 2,3-dioxygenase 1(IDO1), MYC proto-oncogene, and solute carrier family 7 member 5(SLC7A5) in the tumor tissue. Additionally, a co-culture model with CT26 cells and CD8~+ T cells was established in vitro and treated with the BXD-containing serum. The cell counting kit-8(CCK-8) assay was used to examine the viability of CT26 cells. The content of Trp in CT26 cells and CD8~+ T cells, as well as the secretion of IFN-γ and IL-2 by CD8~+ T cells, was measured. RT-qPCR was used to determine the mRNA levels of MYC and SLC7A5 in CT26 cells. The results showed that BXD significantly inhibited the tumor growth, reduced the tumor weight, and decreased the tumor volume in the model mice. In addition, the model mice showed sparse arrangement of tumor cells, varying degrees of patchy necrosis, and downregulated expression of Ki67 in the tumor tissue. BXD elevated the levels of IFN-γ and IL-2 in the tumor tissue, while upregulating the ratio of CD3~+/CD8~+ T cells and lowering the levels of Trp, IDO1, MYC, and SLC7A5. The co-culture experiment showed that BXD-containing serum reduced Trp uptake by CT26 cells, increased Trp content in CD8~+T cells, enhanced IL-2 and IFN-γ secretion of CD8~+T cells, and down-regulated the mRNA levels of MYC and SLC7A5 in CT26 cells. In summary, BXD can inhibit the MYC/SLC7A5 pathway to reshape Trp metabolism and adjust Trp uptake by CD8~+ T cells to enhance the cytotoxicity, thereby inhibiting the development of colon cancer.
Animals
;
Tryptophan/metabolism*
;
Colonic Neoplasms/pathology*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred BALB C
;
Humans
;
Cell Line, Tumor
;
Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism*
;
Female
;
Disease Progression
;
Cell Proliferation/drug effects*
;
Proto-Oncogene Mas
;
Male
5.Intervention mechanism of Yiqi Fumai Formula in mice with experimental heart failure based on "heart-gut axis".
Zi-Xuan ZHANG ; Yu-Zhuo WU ; Ke-Dian CHEN ; Jian-Qin WANG ; Yang SUN ; Yin JIANG ; Yi-Xuan LIN ; He-Rong CUI ; Hong-Cai SHANG
China Journal of Chinese Materia Medica 2025;50(12):3399-3412
This paper aimed to investigate the therapeutic effect and mechanism of action of the Yiqi Fumai Formula(YQFM), a kind of traditional Chinese medicine(TCM), on mice with experimental heart failure based on the "heart-gut axis" theory. Based on the network pharmacology integrated with the group collaboration algorithm, the active ingredients were screened, a "component-target-disease" network was constructed, and the potential pathways regulated by the formula were predicted and analyzed. Next, the model of experimental heart failure was established by intraperitoneal injection of adriamycin at a single high dose(15 mg·kg~(-1)) in BALB/c mice. After intraperitoneal injection of YQFM(lyophilized) at 7.90, 15.80, and 31.55 mg·d~(-1) for 7 d, the protective effects of the formula on cardiac function were evaluated using indicators such as ultrasonic electrocardiography and myocardial injury markers. Combined with inflammatory factors in the cardiac and colorectal tissue, as well as targeted assays, the relevant indicators of potential pathways were verified. Meanwhile, 16S rDNA sequencing was performed on mouse fecal samples using the Illumina platform to detect changes in gut flora and analyze differential metabolic pathways. The results show that the administration of injectable YQFM(lyophilized) for 7 d significantly increased the left ventricular end-systolic internal diameter, fractional shortening, and ejection fraction of cardiac tissue of mice with experimental heart failure(P<0.05). Moreover, markers of myocardial injury were significantly decreased(P<0.05), indicating improved cardiac function, along with significantly suppressed inflammatory responses in cardiac and intestinal tissue(P<0.05). Additionally, the species of causative organisms was decreased, and the homeostasis of gut flora was improved, involving a modulatory effect on PI3K-Akt signaling pathway-related inflammation in cardiac and colorectal tissue. In conclusion, YQFM can affect the "heart-gut axis" immunity through the homeostasis of the gut flora, thereby exerting a therapeutic effect on heart failure. This finding provides a reference for the combination of TCM and western medicine to prevent and treat heart failure based on the "heart-gut axis" theory.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Heart Failure/microbiology*
;
Mice
;
Mice, Inbred BALB C
;
Male
;
Disease Models, Animal
;
Gastrointestinal Microbiome/drug effects*
;
Heart/physiopathology*
;
Humans
;
Signal Transduction/drug effects*
6.Analysis of Delayed Hemolytic Transfusion Reaction in Children with Repeated Blood Transfusion.
Li-Lan GAO ; Meng-Xing LYU ; Shu-Xia WANG ; Xiao-Hong JIN ; Jian-Xiang LIU ; Mei-Kun HU ; Ke-Xuan QU
Journal of Experimental Hematology 2025;33(1):217-223
OBJECTIVE:
To summarize and analyze the characteristics of delayed hemolytic transfusion reaction in children, in order to provide a scientific basis for clinical prevention, and ensure the safety of children's blood transfusion.
METHODS:
The basic situation, clinical symptoms and signs, diagnosis time and disappearance time of alloantibody of delayed hemolytic transfusion reaction in children were retrospectively analyzed. The serological test, routine blood test, biochemical detection and urine analysis results were compared pre- and post-transfusion.
RESULTS:
Among 15 164 children with repeated blood transfusion, 23 cases occurred delayed hemolytic transfusion reactions, with an incidence rate of 0.15%, and mainly children with thalassemia and acute leukemia. 39.13% of delayed hemolytic reactions occurred in children with more than 20 times of blood transfusions. Anemia was the main clinical symptom in 86.96% of children. 4.35% of children had hypotension and dyspnea. Serological test results showed that the positive rate of direct antiglobulin test was 91.30%, and that of erythrocyte homologous antibody test was 100%. Erythrocyte alloantibodies were common in Rh and Kidd blood group systems, accounting for 73.91% and 13.04%, respectively. Laboratory test results showed that hemoglobin, reticulocyte, spherocyte, total bilirubin, indirect bilirubin, lactate dehydrogenase, serum ferritin and urine color were significantly different after transfusion compared with those before transfusion (all P <0.05). The average diagnosis time of delayed hemolytic transfusion reactions was 18.56 days, and the average disappearance time of erythrocyte alloantibodies was 118.43 days.
CONCLUSION
The incidence of delayed hemolytic transfusion reaction is high in children with repeated blood transfusion, and the disappearance time of erythrocyte homologous antibody is long. Blood matched ABO, Rh and Kidd blood group antigens should be transfused prophylactically. Once diagnosed, erythrocyte alloantibody corresponding to antigen-negative blood should be used throughout the whole process.
Humans
;
Child
;
Retrospective Studies
;
Child, Preschool
;
Transfusion Reaction
;
Male
;
Female
;
Infant
;
Adolescent
;
Isoantibodies/blood*
;
Blood Transfusion
7.Tonifying kidney and activating blood therapy for the treatment of diabetic erectile dysfunction: A systematic review and meta-analysis.
Mao-Ke CHEN ; Ke-Cheng LI ; Jun-Long FENG ; Xiang-Fa LIN ; Wen-Xuan DONG ; Zi-Xiang GAO ; Hua-Nan ZHANG ; Hui CHEN ; Ji-Sheng WANG ; Bin WANG
National Journal of Andrology 2025;31(9):832-840
Objective: To systematically evaluate the clinical efficacy and safety of Tonifying kidney and activating blood therapy for the treatment of diabetic mellitus erectile dysfunction. Methods: China National Knowledge Infrastructure(CNKI), Wanfang Data, VIP, Chinese Biomedical Database(CBM), PubMed, Cochrane Library, Embase and Web of Science were searched from inception until October 20th of 2024,for randomized controlled trials of Tonifying kidney and activating blood therapy for the treatment of diabetic erectile dysfunction. Literature screening, quality evaluation, and data extraction were carried out in accordance with relevant standards. The software of RevMan5.4 was used for the analysis of publication bias. And meta-analysis was conducted to assess the impact of this therapy on IIEF-5, total effective rate, adverse reactions. The evidence levels according to the analysis results were evaluated. Results: Totally 19 RCTs were included, involving 1 612 patients. The result of meta-analysis indicated that Tonifying kidney and activating blood therapy had advantages on the improvement of IIEF-5 scores (MD=3.59,95%CI[2.14,5.03],P<0.01),total effective rate (OR=4.30,95%CI[3.29,5.32],P<0.000 01). However, there was no statistically significant difference in the incidence of adverse reactions(OR=0.98,95%CI[0.48,2.01],P=0.96) between the two groups. Conclusions: Tonifying kidney and activating blood therapy can improve the clinical efficacy and IIEF-5 score for the patients with diabetic erectile dysfunction. But considering the limited quantity of included studies, more high-quality studies still be needed to validate the therapeutic effect.
Humans
;
Male
;
Erectile Dysfunction/therapy*
;
Randomized Controlled Trials as Topic
;
Kidney
;
Medicine, Chinese Traditional
;
Diabetes Complications/therapy*
8.EGR3 reduces podocyte inflammatory damage in obesity related glomerulopathy by inhibiting the PRMT1/p-STAT3 pathway
Lin PENG ; Xiaoying SUN ; Xuan YI ; Zhouqi WANG ; Ke CHEN
Journal of Central South University(Medical Sciences) 2024;49(3):349-358
Objective:Obesity related glomerulopathy(ORG)is induced by obesity,but the pathogenesis remains unclear.This study aims to investigate the expression of early growth response protein 3(EGR3)in the renal cortex tissues of ORG patients and high-fat diet-induced obese mice,and to further explore the molecular mechanism of EGR3 in inhibiting palmitic acid(PA)induced human podocyte inflammatory damage. Methods:Renal cortex tissues were collected from ORG patients(n=6)who have been excluded from kidney damage caused by other diseases and confirmed by histopathology,and from obese mice induced by high-fat diet(n=10).Human and mouse podocytes were intervened with 150 μmol/L PA for 48 hours.EGR3 was overexpressed or silenced in human podocytes.Enzyme linked immunosorbent assay(ELISA)was used to detcet the levels of interleukin-6(IL-6)and interleukin-1β(IL-1β).Real-time RT-PCR was used to detect the mRNA expressions of EGR3,podocytes molecular markers nephrosis 1(NPHS1),nephrosis 2(NPHS2),podocalyxin(PODXL),and podoplanin(PDPN).RNA-seq was performed to detect differentially expressed genes(DEGs)after human podocytes overexpressing EGR3 and treated with 150 μmol/L PA compared with the control group.Co-immunoprecipitation(Co-IP)combined with liquid chromatography tandem mass spectrometry(LC-MS)was used to detect potential interacting proteins of EGR3 and the intersected with the RNA-seq results.Co-IP confirmed the interaction between EGR3 and protein arginine methyltransferases 1(PRMT1),after silencing EGR3 and PRMT1 inhibitor intervention,the secretion of IL-6 and IL-1β in PA-induced podocytes was detected.Western blotting was used to detect the expression of phosphorylated signal transducer and activator of transcription 3(p-STAT3)after overexpression or silencing of EGR3. Results:EGR3 was significantly upregulated in renal cortex tissues of ORG patients and high-fat diet-induced obese mice(both P<0.01).In addition,after treating with 150 μmol/L PA for 48 hours,the expression of EGR3 in human and mouse podocytes was significantly upregulated(both P<0.05).Overexpression or silencing of EGR3 in human podocytes inhibited or promoted the secretion of IL-6 and IL-1β in the cell culture supernatant after PA intervention,respectively,and upregulated or downregulated the expression of NPHS1,PODXL,NPHS2,and PDPN(all P<0.05).RNA-seq showed a total of 988 DEGs,and Co-IP+LC-MS identified a total of 238 proteins that may interact with EGR3.Co-IP confirmed that PRMT1 was an interacting protein with EGR3.Furthermore,PRMT1 inhibitors could partially reduce PA-induced IL-6 and IL-1β secretion after EGR3 silencing in human podocytes(both P<0.05).Overexpression or silencing of EGR3 negatively regulated the expression of PRMT1 and p-STAT3. Conclusion:EGR3 may reduce ORG podocyte inflammatory damage by inhibiting the PRMT1/p-STAT3 pathway.
9.Impact of brain drain on organizational cohesion in northeastern public health institutions:Based on moderated mediation model tests
Qun-Kai WANG ; Nan MENG ; Qun-Hong WU ; Ke-Xin WANG ; Mei-Ye LI ; Rui-Qian ZHUGE ; Yu-Xuan WANG
Chinese Journal of Health Policy 2024;17(6):56-63
Objective:The purpose of this study is to explore in depth the mechanism of the impact of brain drain on organizational cohesion,with a view to cracking the vicious circle problem caused by brain drain in the northeast region and eliminating the unfavorable factors affecting the core cohesion of public health institutions.Methods:A combination of convenience sampling and snowball sampling was used to survey11 912 valid questionnaires,and the data were systematically analyzed using descriptive statistics,regression analysis,and moderated mediated effects analysis.Results:Brain drain has a significant negative effect on organizational cohesion(β=-1.29,P<0.001);and role overload partially mediates between the two,with a significant mediating effect(effect value=-0.56,95%CI=-0.67~-0.46),and the indirect effect accounts for 43.4%of the total effect;and monthly income significantly moderates the effect of brain drain on organizational cohesion through role overload(β=1.00,P<0.001).Conclusion:It is recommended to alleviate the sense of role overload among public health personnel by adjusting the level of salary and benefits,and to reduce the negative impact of brain drain by adopting long-term incentive mechanisms and other strategies,thus enhancing organizational cohesion and providing theoretical and practical guidance for relevant institutions.
10.Rapid Screening of 34 Emerging Contaminants in Surface Water by UHPLC-Q-TOF-MS
Chen-Shan LÜ ; Yi-Xuan CAO ; Xiao-Xi MU ; Hai-Yan CUI ; Tao WANG ; Zhi-Wen WEI ; Ke-Ming YUN ; Meng HU
Journal of Forensic Medicine 2024;40(1):30-36
Objective To establish a rapid screening method for 34 emerging contaminants in surface water by ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry(UHPLC-Q-TOF-MS).Methods The pretreatment conditions of solid phase extraction(SPE)were op-timized by orthogonal experimental design and the surface water samples were concentrated and ex-tracted by Oasis? HLB and Oasis? MCX SPE columns in series.The extracts were separated by Kine-tex? EVO C18 column,with gradient elution of 0.1%formic acid aqueous solution and 0.1%formic acid methanol solution.Q-TOF-MS'fullscan'and'targeted MS/MS'modes were used to detect 34 emerging contaminants and to establish a database with 34 emerging contaminants precursor ion,prod-uct ion and retention times.Results The 34 emerging contaminants exhibited good linearity in the con-centration range respectively and the correlation coefficients(r)were higher than 0.97.The limit of de-tection was 0.2-10 ng/L and the recoveries were 81.2%-119.2%.The intra-day precision was 0.78%-18.70%.The method was applied to analyze multiple surface water samples and 6 emerging contaminants were detected,with a concentration range of 1.93-157.71 ng/L.Conclusion The method is simple and rapid for screening various emerging contaminants at the trace level in surface water.

Result Analysis
Print
Save
E-mail