1.Effects of long working hours, shift rotation, and job stress on work-related musculoskeletal disorders among key occupational populations in Yunnan Province
Jun QI ; Jingjing CAO ; Meifeng ZHOU ; Ke ZHU ; Xingren LIU ; Linbo FAN
Journal of Environmental and Occupational Medicine 2025;42(3):302-309
Background The adverse effects of long working hours, shift rotation, and job stress on the physical and mental health of occupational populations require urgent attention. Objective To investigate and compare the positive rates of WMSDs between different industries, analyze the exposure status of long working hours, shift rotation, and job stress among key occupational groups, and evaluate the impacts of these factors on WMSDs in the manufacturing and service industries. Methods The study subjects were derived from key occupational populations in Yunnan Province, recruited by the Chinese National Occupational Health Literacy Monitoring Survey in 2022. A cross-sectional design was used for this survey. The key occupational populations were recruited from the secondary industry (manufacturing industry, metal mining and beneficiation industry, and non-metal mining and beneficiation industry) by stratified random sampling and from the tertiary industry (medical and healthcare industry, education industry, environmental sanitation industry, transportation industry, and express/takeaway delivery industry) by proportional probability sampling, and
2.The multi-center mid-term clinical outcomes of combined complete preservation of chordal structure mitral valve replacement with total anatomic complete arterial myocardial revascularization for coronary patients with moderate-to-severe or severe ischemic mitral regurgitation
Ke GUO ; Xujun CHEN ; Baoshi ZHENG ; Chao SHI ; Keli HUANG ; Yong CAO ; Chengquan LIAO ; Jingwei CHEN ; Yu LIN ; Chengxin LIU ; Quansheng CAO ; Lin SHEN ; Zhendong WANG
Chinese Journal of Surgery 2025;63(1):58-67
Objective:To evaluate the clinical outcomes of combined complete preservation of chordal structure mitral valve replacement (C-MVR) with total anatomical arterial myocardial revascularization (TACR) in coronary patients with moderate-to-severe or severe ischemic mitral regurgitation (IMR).Methods:This is a retrospective multi-center case series study. Data were retrospectively collected from 127 patients with coronary artery disease with moderate to severe or severe IMR who received TACR with C-MVR from July 2015 to April 2024 in 13 hospitals in China. There were 90 males and 37 females, aged (56.5±10.7) years (range: 33 to 74 years). Perioperative data and follow-up data including left ventricular ejection fraction, left ventricular end-diastolic diameter, and patency rate of arterial grafts of patients were collected. Comparisons were made using paired sample t-test or χ2 test. Results:In this cohort of 127 patients, 67 underwent concurrent tricuspid valve repair. During surgery, 113 grafts of the left internal mammary artery (LIMA), 127 grafts of the left radial artery, 80 grafts of the right radial artery, and 110 grafts of the right internal mammary artery (RIMA) were harvested. The number of the distal anastomosis was 4.2±0.4 (range: 3 to 5). The aortic cross-clamp time and cardiopulmonary bypass time were (97.5±23.4) minutes (range: 90 to 161 minutes) and (145.4±19.2) minutes (range: 101 to 210 minutes), respectively. There was one operative death. Intraoperative placement of an intra-aortic balloon pump was performed in 21 patients to improve the left ventricular ejection. No sternal ischemic occurred. All patients completed follow-up, with a mean follow-up period of (64.3±7.5) months (range: 4 to 110 months). No major cerebrovascular events occurred during the follow-up period, and all patients survived. Left ventricular ejection fraction improved postoperatively (55.0%±5.3% vs. 41.0%±15.3%, t=17.23, P<0.01). The proportion of patients with New York Heart Association functional class ≤2 increased postoperatively (23.6% (30/127) vs. 87.3% (110/126), χ2=103.77, P<0.01). The proportion of patients with Canadian Cardiovascular Society Angina Classification ≤3 decreased postoperatively (4.8% (6/126) vs. 78.7% (100/127), χ2=142.19, P<0.01). The left ventricular end-diastolic diameter decreased postoperatively ((5.70±4.50) cm vs. (6.10±0.23) cm, t=12.15, P<0.01). Coronary multi-detector computed tomography angiography (MDCTA) follow-up was conducted for (60.5±11.7) months (range: 6 to 109 months) postoperatively. MDCTA confirmed the patency rates of the grafts: 96.4% (108/112) for the LIMA grafts, 88.9% (112/126) for the left radial artery grafts, 93.7% (74/79) for the right radial artery grafts, and 90.9% (100/110) for the free RIMA grafts. No significant differences in graft patency rates were observed between the arterial grafts ( χ2=5.24, P=0.155). Conclusion:The results of this multi-centre study demonstrate satisfactory mid-term results of C-MVR with TACR for the treatment of coronary artery disease with moderate to severe or severe IMR.
3.The multi-center mid-term clinical outcomes of combined complete preservation of chordal structure mitral valve replacement with total anatomic complete arterial myocardial revascularization for coronary patients with moderate-to-severe or severe ischemic mitral regurgitation
Ke GUO ; Xujun CHEN ; Baoshi ZHENG ; Chao SHI ; Keli HUANG ; Yong CAO ; Chengquan LIAO ; Jingwei CHEN ; Yu LIN ; Chengxin LIU ; Quansheng CAO ; Lin SHEN ; Zhendong WANG
Chinese Journal of Surgery 2025;63(1):58-67
Objective:To evaluate the clinical outcomes of combined complete preservation of chordal structure mitral valve replacement (C-MVR) with total anatomical arterial myocardial revascularization (TACR) in coronary patients with moderate-to-severe or severe ischemic mitral regurgitation (IMR).Methods:This is a retrospective multi-center case series study. Data were retrospectively collected from 127 patients with coronary artery disease with moderate to severe or severe IMR who received TACR with C-MVR from July 2015 to April 2024 in 13 hospitals in China. There were 90 males and 37 females, aged (56.5±10.7) years (range: 33 to 74 years). Perioperative data and follow-up data including left ventricular ejection fraction, left ventricular end-diastolic diameter, and patency rate of arterial grafts of patients were collected. Comparisons were made using paired sample t-test or χ2 test. Results:In this cohort of 127 patients, 67 underwent concurrent tricuspid valve repair. During surgery, 113 grafts of the left internal mammary artery (LIMA), 127 grafts of the left radial artery, 80 grafts of the right radial artery, and 110 grafts of the right internal mammary artery (RIMA) were harvested. The number of the distal anastomosis was 4.2±0.4 (range: 3 to 5). The aortic cross-clamp time and cardiopulmonary bypass time were (97.5±23.4) minutes (range: 90 to 161 minutes) and (145.4±19.2) minutes (range: 101 to 210 minutes), respectively. There was one operative death. Intraoperative placement of an intra-aortic balloon pump was performed in 21 patients to improve the left ventricular ejection. No sternal ischemic occurred. All patients completed follow-up, with a mean follow-up period of (64.3±7.5) months (range: 4 to 110 months). No major cerebrovascular events occurred during the follow-up period, and all patients survived. Left ventricular ejection fraction improved postoperatively (55.0%±5.3% vs. 41.0%±15.3%, t=17.23, P<0.01). The proportion of patients with New York Heart Association functional class ≤2 increased postoperatively (23.6% (30/127) vs. 87.3% (110/126), χ2=103.77, P<0.01). The proportion of patients with Canadian Cardiovascular Society Angina Classification ≤3 decreased postoperatively (4.8% (6/126) vs. 78.7% (100/127), χ2=142.19, P<0.01). The left ventricular end-diastolic diameter decreased postoperatively ((5.70±4.50) cm vs. (6.10±0.23) cm, t=12.15, P<0.01). Coronary multi-detector computed tomography angiography (MDCTA) follow-up was conducted for (60.5±11.7) months (range: 6 to 109 months) postoperatively. MDCTA confirmed the patency rates of the grafts: 96.4% (108/112) for the LIMA grafts, 88.9% (112/126) for the left radial artery grafts, 93.7% (74/79) for the right radial artery grafts, and 90.9% (100/110) for the free RIMA grafts. No significant differences in graft patency rates were observed between the arterial grafts ( χ2=5.24, P=0.155). Conclusion:The results of this multi-centre study demonstrate satisfactory mid-term results of C-MVR with TACR for the treatment of coronary artery disease with moderate to severe or severe IMR.
4.Effect of "Fahan" on Metabolites of Blumea balsamifera Analyzed by Non-targeted Metabolomics
Jiayuan CAO ; Xin XU ; Xiangsheng ZHANG ; Bingnan LIU ; Yongyao WEI ; Ke ZHONG ; Yuxin PANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):200-207
ObjectiveTo characterize the changes of metabolites of Blumea balsamifera in the process of sweating by non-targeted metabolomics, and to investigate the influence of sweating processing on the constituents of B. balsamifera. MethodsUltra performance liquid chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) metabolomics was used to identify the metabolites in no sweating group(F1), sweating 2 d group(F2) and sweating 4 d group(F3), the differences of metabolites between the groups were compared by principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA), and differential metabolites were screened according to the variable importance in the projection(VIP) value>1 and P<0.05, and the pathway enrichment of the differential metabolites was analyzed by Kyoto Encyclopedia of Genes and Genomes(KEGG). ResultsThe results of PCA and OPLS-DA showed a clear distinction between the three groups of samples, indicating significant differences in the compositions of the three groups of samples. A total of 433 differential metabolites were screened between the F1 and F2, with 154 up-regulated and 279 down-regulated, the significant up-regulated metabolites were tangeritin, 5-O-demethylnobiletin and so on, while the metabolites with significant down-regulation included alternariol, fortunellin, etc. A total of 379 differential metabolites were screened between the F2 and F3, with 150 up-regulated and 229 down-regulated, the significant up-regulated metabolites were isoimperatorin, helianyl octanoate and so on, and the significant down-regulated metabolites were hovenoside I, goyasaponin Ⅲ, etc. KEGG pathway enrichment analysis showed that tyrosine metabolism, isoquinoline alkaloid biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, tryptophan metabolism, valine, leucine and isoleucine biosynthesis, pantothenate and coenzyme A biosynthesis may be the key pathways affecting metabolite differences of B. balsamifera after sweating treatment. ConclusionSweating can reduce the content of endophytic mycotoxins in B. balsamifera and has a great impact on the synthesis and metabolic pathways of total flavonoids and auxin. This study can provide a reference for the process research on the sweating conditions of B. balsamifera.
5.Molecular mechanism of luteolin against acute lung injury based on network pharmacology and molecular docking
Xue-Feng WANG ; Xin-Zhi PAN ; Ning CAO ; Ke-Yi SUN ; Dhar RANA ; Hui-Fang TANG
Chinese Pharmacological Bulletin 2024;40(8):1583-1591
Aim To explore the molecular mechanism of luteolin against acute lung injury by network phar-macology and molecular docking technology,and to conduct experimental verification.Methods The re-lated targets of luteolin were predicted by PubChem and Swiss Target Prediction databases.Acute lung in-jury-related targets were collected through the Gene-Cards database.Venny 2.1 was used to draw the Venn diagram,and the common targets of drug and disease were obtained.The protein interaction network(PPI)was established by String online platform,and the core targets were screened by Cytoscape 3.8.2 software.The functional enrichment analysis of Gene Ontology(GO)and pathway enrichment analysis of Kyoto Ency-clopedia of Gene and Genome(KEGG)were per-formed on the common targets using the DAVID data-base,and the results were visualized.Finally,molecu-lar docking was performed by Auto Dock software,and the molecular results were visualized by Pymol.The mouse acute lung injury model was constructed.HE staining was used to detect histopathology,and Western blot was used to detect lung tissue related proteins.Results After screening,85 common targets were ob-tained.Among them,the core targets were AKT1,EG-FR,SRC,MMP9,ESR1,PTGS2,etc.GO enrichment analysis obtained 265 biological processes,including signal transduction,protein phosphorylation,and nega-tive regulation of apoptosis.There were 48 cells,main-ly including plasma membrane,cell solute,cytoplasm,etc.There are 107 molecular functions,mainly inclu-ding ATP binding,protein serine/threonine/tyrosine ki-nase activity,protein kinase activity and so on.A total of 92 signaling pathway were obtained by KEGG path-way enrichment analysis,which mainly acted on PI3 K-AKT signaling pathway,ErbB signaling pathway,VEGF signaling pathway,etc.Molecular docking results showed that luteolin had good docking activity with core targets AKT1,EGFR,SRC,MMP9,ESR1,PTGS2,MMP2,GSK3 B,KDR and PARP1.The binding ener-gy of ERS1,GSK3B and MMP2 was lower than-5.0 kal·mol-1,and the affinity with luteolin was stronger.The pathological results of lung tissue showed that lute-olin could inhibit inflammatory infiltration and had a strong anti-inflammatory effect in LPS-induced acute lung injury model in mice.Western blot experiments showed that luteolin might alleviate the inflammatory response by inhibiting the phosphorylation of AKT.Conclusions Luteolin can play an anti-acute lung in-jury role through multi-target and multi-channel mecha-nisms,which may be closely related to the inhibition of AKT phosphorylation.
6.Effect of miR-30d-5p on the growth and metastasis of cervical cancer cells
Hong PAN ; Ke MA ; Yan CAO ; Zheng-Wen QIN
Journal of Regional Anatomy and Operative Surgery 2024;33(8):670-675
Objective To explore the expression of miR-30d-5p in cervical cancer and its effect on malignant biological behavior of cervical cancer cells.Methods qRT-PCR was used to detect the expression of miR-30d-5p in cervical cancer tissues,adjacent tissues,normal cervical cells and cervical cancer cells.The mimic negative control(mimic NC)and miR-30d-5p mimic were transfected into SiHa cells,and the transfection efficiency of miR-30d-5p was detected by qRT-PCR.CCK-8 and cell clone formation experiments were used to detect cell proliferation.Flow cytometry was used to detect cell apoptosis.Scratch wound healing assay and Transwell assay were used to detect cell migration and invasion,respectively.Western blot was used to detect the expression of cell apoptosis and invasion-related proteins.Results Compared with adjacent tissues,the expression level of miR-30d-5p in cervical cancer tissues was significantly down-regulated(P<0.01).Compared withEct1/E6E7 cells,the expression level of miR-30d-5p in cervical cancer cell lines was significantly decreased(P<0.01).Overexpression of miR-30d-5p inhibited the proliferation,migration and invasion of SiHa cells and promoted apoptosis(P<0.01).In addition,overexpression of miR-30d-5p significantly down-regulated the expression levels of Bcl-2,N-cadherin and Vimentin(P<0.01),and significantly up-regulated the expression levels of Bax,cleaved caspase-3 and E-cadherin(P<0.01).Conclusion miR-30d-5p is significantly down-regulated in human cervical cancer tissues and related cervical cancer cell lines.miR-30d-5p can inhibit cervical cancer cells in vitro by inhibiting cell proliferation,migration and invasion,suggesting that miR-30d-5p may be a potential new target for diagnosis and treatment of cervical cancer patients.
7.Inhibition of type 3 deiodinase expression can improve mitochondrial function in skeletal muscle of sepsis by up-regulating peroxisome proliferator-activated receptor-γ coactivator-1α
Gang WANG ; Jianfeng DUAN ; Ke CAO ; Tao GAO ; Anqi JIANG ; Yun XU ; Zhanghua ZHU ; Wenkui YU
Chinese Critical Care Medicine 2024;36(8):841-847
Objective:To investigate the protective effects and mechanisms of targeted inhibition of type 3 deiodinase (Dio3) on skeletal muscle mitochondria in sepsis.Methods:① In vivo experiments: adeno-associated virus (AAV) was employed to specifically target Dio3 expression in the anterior tibial muscle of rats, and a septic rat model was generated using cecal ligation and puncture (CLP). The male Sprague-Dawley (SD) rats were divided into shNC+Sham group, shD3+Sham group, shNC+CLP group, and shD3+CLP group by random number table method, with 8 rats in each group. After CLP modeling, tibial samples were collected and Western blotting analysis was conducted to assess the protein levels of Dio3, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), and silence-regulatory protein 1 (SIRT1). Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was utilized to examine mRNA expression of genes including thyroid hormone receptors (THRα, THRβ), monocarboxylate transporter 10 (MCT10), mitochondrial DNA (mtDNA), and PGC1α. Transmission electron microscopy was employed to investigate mitochondrial morphology. ② In vitro experiments: involved culturing C2C12 myoblasts, interfering with Dio3 expression using lentivirus, and constructing an endotoxin cell model by treating cells with lipopolysaccharide (LPS). C2C12 cells were divided into shNC group, shD3 group, shNC+LPS group, and shD3+LPS group. Immunofluorescence colocalization analysis was performed to determine the intracellular distribution of PGC1α. Co-immunoprecipitation assay coupled with Western blotting was carried out to evaluate the acetylation level of PGC1α. Results:① In vivo experiments: compared with the shNC+Sham group, the expression of Dio3 protein in skeletal muscle of the shNC+CLP group was significantly increased (Dio3/β-Tubulin: 3.32±0.70 vs. 1.00±0.49, P < 0.05), however, there was no significant difference in the shD3+Sham group. Dio3 expression in the shD3+CLP group was markedly reduced relative to the shNC+CLP group (Dio3/β-Tubulin: 1.42±0.54 vs. 3.32±0.70, P < 0.05). Compared with the shNC+CLP group, the expression of T3-regulated genes in the shD3+CLP group were restored [THRα mRNA (2 -ΔΔCt): 0.67±0.05 vs. 0.33±0.01, THRβ mRNA (2 -ΔΔCt): 0.94±0.05 vs. 0.67±0.02, MCT10 mRNA (2 -ΔΔCt): 0.65±0.03 vs. 0.57±0.02, all P < 0.05]. Morphology analysis by electron microscopy suggested prominent mitochondrial damage in the skeletal muscle of the shNC+CLP group, while the shD3+CLP group exhibited a marked improvement. Compared with the shNC+Sham group, the shNC+CLP group significantly reduced the number of mitochondria (cells/HP: 10.375±1.375 vs. 13.750±2.063, P < 0.05), while the shD3+CLP group significantly increased the number of mitochondria compared to the shNC+CLP group (cells/HP: 11.250±2.063 vs. 10.375±1.375, P < 0.05). The expression of mtDNA in shNC+CLP group was markedly reduced compared with shNC+Sham group (copies: 0.842±0.035 vs. 1.002±0.064, P < 0.05). Although no difference was detected in the mtDNA expression between shD3+CLP group and shNC+CLP group, but significant increase was found when compared with the shD3+Sham group (copies: 0.758±0.035 vs. 0.474±0.050, P < 0.05). In the shD3+CLP group, PGC1α expression was significantly improved at both transcriptional and protein levels relative to the shNC+CLP group [PGC1α mRNA (2 -ΔΔCt): 1.49±0.13 vs. 0.68±0.06, PGC1α/β-Tubulin: 0.76±0.02 vs. 0.62±0.04, both P < 0.05]. ② In vitro experiments: post-24-hour LPS treatment of C2C12 cells, the cellular localization of PGC1α became diffuse; interference with Dio3 expression promoted PGC1α translocation to the perinuclear region and nucleus. Moreover, the acetylated PGC1α level in the shD3+LPS group was significantly lower than that in the shNC+LPS group (acetylated PGC1α/β-Tubulin: 0.59±0.01 vs. 1.24±0.01, P < 0.05), while the expression of the deacetylating agent SIRT1 was substantially elevated following Dio3 inhibition (SIRT1/β-Tubulin: 1.04±0.04 vs. 0.58±0.03, P < 0.05). When SIRT1 activity was inhibited by using EX527, PGC1α protein expression was notably decreased compared to the shD3+LPS group (PGC1α/β-Tubulin: 0.92±0.03 vs. 1.58±0.03, P < 0.05). Conclusion:Inhibition of Dio3 in skeletal muscle reduced the acetylation of PGC1α through activating SIRT1, facilitating nuclear translocation of PGC1α, thereby offering protection against sepsis-induced skeletal muscle mitochondrial damage.
8.Chemical constituents from the flower buds of Magnolia biondii and their in vitro acetylcholinesterase inhibitory activities
Yan-Gang CAO ; Jian-Chao WANG ; Meng-Na WANG ; Yu-Huan HE ; Hong-Wei LI ; Zhi-You HAO ; Xiao-Ke ZHENG ; Wei-Sheng FENG
Chinese Traditional Patent Medicine 2024;46(7):2278-2283
AIM To study the chemical constituents from flower buds of Magnolia biondii Pamp.and their in vitro acetylcholinesterase inhibitory activities.METHODS The 50% acetone extract from the flower buds of M.biondii was isolated and purified by Diaion HP-20,Toyopearl HW-40C,ODS and semi-preparative HPLC,then the structures of obtained compounds were identified by physicochemical properties and spectral data.The in vitro acetylcholinesterase inhibitory activities of these compounds were determined according to previous method established by research group.RESULTS Seventeen compounds were isolated and identified as crassifolioside(1),magnoloside B(2),rutin(3),isoquercitrin(4),quercetin(5),northalifoline(6),cordysinin B(7),thymidine(8),indazole(9),dihydrodehydrodiconiferyl alcohol(10),aesculetin(11),C-veratroylglycol(12),3,4-dihydroxyphenylethanol(13),3-methoxy-4-hydroxyphenylethanol(14),3,4-dihydroxybenzoic acid(15),2,4,6-trimethoxyphenol(16),syringic acid(17).CONCLUSION Compounds 1-17 are isolated from this plant for the first time,none of which show acetylcholinesterase inhibitory activities at the concentration of 20 μmol/L.
9.Recent advance in CT image features in predicting hematoma expansion after intracerebral hemorrhage
Ren KE ; Lei SONG ; Feng CAO ; Yueqi WANG ; Chen ZHANG ; Hui CHEN
Chinese Journal of Neuromedicine 2024;23(11):1107-1112
Intracerebral hemorrhage (ICH) is a common type of stroke in clinic. At present, its diagnosis and prognosis are mostly based on CT image features. Hematoma expansion is an important determinant for poor prognosis and high mortality in ICH patients. Prediction of hematoma expansion after ICH is very important for its treatment and prognosis. CT and its image features, such as CT plain scan, CT enhanced scan, radiomics and artificial intelligence, have been widely used in predicting hematoma expansion in recent years. This article reviews the research progress of CT image features in predicting hematoma expansion after ICH, in order to provide help for its prevention and treatment in clinical practice.
10.Effect and mechanism of human adipose-derived stem cell exosomes on diabetic peripheral neuropathy
Tao CAO ; Tong HAO ; Dan XIAO ; Weifeng ZHANG ; Peng JI ; Yanhui JIA ; Jing WANG ; Xujie WANG ; Hao GUAN ; Ke TAO
Chinese Journal of Burns 2024;40(3):240-248
Objective:To investigate the changes of artemin protein expression in diabetic peripheral neuropathy (DPN) and to explore the regulatory effect of human adipose-derived stem cell (ADSC) exosomes on the change of artemin protein expression.Methods:This research was a prospective observational clinical research combined with experimental research. Thirteen DPN patients (9 males and 4 females, aged 32 to 68 years) who were admitted to the First Affiliated Hospital of Air Force Medical University (hereinafter referred to as our hospital) from May 2022 to October 2023 and met the inclusion criteria were selected as DPN group, and 5 non-diabetes patients (4 males and 1 female, aged 29 to 61 years) who were admitted to our hospital in the same period of time and met the inclusion criteria were selected as control group. The toe nerve or sural nerve tissue in the abandoned tissue after debridement or amputation of patients in the two groups was collected. The pathological changes of nerve tissue were observed after hematoxylin-eosin staining; the protein expressions of S100β and artemin in nerve tissue were observed after immunofluorescence staining, and the artemin protein expression was quantified; the protein and mRNA expressions of artemin were detected by Western blotting and real-time fluorescent quantitative reverse transcription polymerase chain reaction, respectively (the sample number in DPN group and control group was 13 and 5, respectively). Twelve male C57BL/6 mice aged 3 to 5 days were collected to isolate Schwann cells, and the cells were divided into conventional culture group cultured routinely, high glucose alone group (cultured with high concentration of glucose solution only), and high glucose+exosome group (cultured with high concentration of glucose solution and extracted human ADSC exosomes). After 24 hours of culture, the cell proliferation activity was detected by cell counting kit 8 ( n=6). After 48 hours of culture, the protein expression of artemin was detected by Western blotting ( n=3). Results:Compared with those in control group, the neural supporting cells decreased and the inflammatory cells increased in the nerve tissue of patients in DPN group, showing typical manifestations of nerve injury. Immunofluorescence staining showed that compared with those in control group, the nuclei was more, and the protein expression of S100β was lower in nerve tissue of patients in DPN group. The protein expression of artemin in nerve tissue of patients in DPN group was 71±31, which was significantly lower than 1 729±62 in control group ( t=76.92, P<0.05). Western blotting detection showed that the protein expression of artemin in nerve tissue of patients in DPN group was 0.74±0.08, which was significantly lower than 0.97±0.06 in control group ( t=5.49, P<0.05). The artemin mRNA expression in nerve tissue of patients in DPN group was significantly lower than that in control group ( t=7.65, P<0.05). After 24 hours of culture, compared with that in conventional culture group, the proliferation activities of Schwann cells in high glucose alone group and high glucose+exosome group were significantly decreased ( P<0.05); compared with that in high glucose alone group, the proliferation activity of Schwann cells in high glucose+exosome group was significantly increased ( P<0.05). After 48 hours of culture, compared with those in conventional culture group, the protein expressions of artemin of Schwann cells in high glucose alone group and high glucose+exosome group were significantly decreased ( P<0.05); compared with that in high glucose alone group, the protein expression of artemin of Schwann cells in high glucose+exosome group was significantly increased ( P<0.05). Conclusions:The protein expression of artemin in nerve tissue of DPN patients is lower than that in normal nerve tissue, which may be related to the reduction of proliferation activity of Schwann cells by high glucose. Human ADSC exosomes may improve the proliferation activity of Schwann cells by increasing artemin protein expression, thereby delaying the progression of DPN.

Result Analysis
Print
Save
E-mail