1.Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome (version 2024)
Junyu WANG ; Hai JIN ; Danfeng ZHANG ; Rutong YU ; Mingkun YU ; Yijie MA ; Yue MA ; Ning WANG ; Chunhong WANG ; Chunhui WANG ; Qing WANG ; Xinyu WANG ; Xinjun WANG ; Hengli TIAN ; Xinhua TIAN ; Yijun BAO ; Hua FENG ; Wa DA ; Liquan LYU ; Haijun REN ; Jinfang LIU ; Guodong LIU ; Chunhui LIU ; Junwen GUAN ; Rongcai JIANG ; Yiming LI ; Lihong LI ; Zhenxing LI ; Jinglian LI ; Jun YANG ; Chaohua YANG ; Xiao BU ; Xuehai WU ; Li BIE ; Binghui QIU ; Yongming ZHANG ; Qingjiu ZHANG ; Bo ZHANG ; Xiangtong ZHANG ; Rongbin CHEN ; Chao LIN ; Hu JIN ; Weiming ZHENG ; Mingliang ZHAO ; Liang ZHAO ; Rong HU ; Jixin DUAN ; Jiemin YAO ; Hechun XIA ; Ye GU ; Tao QIAN ; Suokai QIAN ; Tao XU ; Guoyi GAO ; Xiaoping TANG ; Qibing HUANG ; Rong FU ; Jun KANG ; Guobiao LIANG ; Kaiwei HAN ; Zhenmin HAN ; Shuo HAN ; Jun PU ; Lijun HENG ; Junji WEI ; Lijun HOU
Chinese Journal of Trauma 2024;40(5):385-396
Traumatic supraorbital fissure syndrome (TSOFS) is a symptom complex caused by nerve entrapment in the supraorbital fissure after skull base trauma. If the compressed cranial nerve in the supraorbital fissure is not decompressed surgically, ptosis, diplopia and eye movement disorder may exist for a long time and seriously affect the patients′ quality of life. Since its overall incidence is not high, it is not familiarized with the majority of neurosurgeons and some TSOFS may be complicated with skull base vascular injury. If the supraorbital fissure surgery is performed without treatment of vascular injury, it may cause massive hemorrhage, and disability and even life-threatening in severe cases. At present, there is no consensus or guideline on the diagnosis and treatment of TSOFS that can be referred to both domestically and internationally. To improve the understanding of TSOFS among clinical physicians and establish standardized diagnosis and treatment plans, the Skull Base Trauma Group of the Neurorepair Professional Committee of the Chinese Medical Doctor Association, Neurotrauma Group of the Neurosurgery Branch of the Chinese Medical Association, Neurotrauma Group of the Traumatology Branch of the Chinese Medical Association, and Editorial Committee of Chinese Journal of Trauma organized relevant experts to formulate Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome ( version 2024) based on evidence of evidence-based medicine and clinical experience of diagnosis and treatment. This consensus puts forward 12 recommendations on the diagnosis, classification, treatment, efficacy evaluation and follow-up of TSOFS, aiming to provide references for neurosurgeons from hospitals of all levels to standardize the diagnosis and treatment of TSOFS.
2.Quality of moxa from Artemisia argyi and A. stolonifera in different storage years based on simultaneous thermal analysis.
Bing YI ; Jia-Qi QIAO ; Li-Chun ZHAO ; Xian-Zhang HUANG ; Da-Hui LIU ; Li ZHOU ; Li-Ping KANG ; Yuan ZHANG
China Journal of Chinese Materia Medica 2023;48(14):3693-3700
The quality of moxa is an important factor affecting moxibustion therapy, and traditionally, 3-year moxa is considered optimal, although scientific data are lacking. This study focused on 1-year and 3-year moxa from Artemisia stolonifera and A. argyi(leaf-to-moxa ratio of 10∶1) as research objects. Scanning electron microscopy(SEM), Van Soest method, and simultaneous thermal analysis were used to investigate the differences in the combustion heat quality of 1-year and 3-year moxa and their influencing factors. The results showed that the combustion of A. stolonifera moxa exhibited a balanced heat release pattern. The 3-year moxa released a concentrated heat of 9 998.84 mJ·mg~(-1)(accounting for 54% of the total heat release) in the temperature range of 140-302 ℃, with a heat production efficiency of 122 mW·mg~(-1). It further released 7 512.51 mJ·mg~(-1)(accounting for 41% of the total heat release) in the temperature range of 302-519 ℃. The combustion of A. argyi moxa showed a rapid heat release pattern. The 3-year moxa released a heat of 16 695.28 mJ·mg~(-1)(accounting for 70% of the total heat release) in the temperature range of 140-311 ℃, with an instantaneous power output of 218 mW·mg~(-1). It further released 5 996.95 mJ·mg~(-1)(accounting for 25% of the total heat release) in the temperature range of 311-483 ℃. Combustion parameters such as-R_p,-R_v, D_i, C, and D_b indicated that the combustion heat quality of 3-year moxa was superior to that of 1-year moxa. It exhibited greater combustion heat, heat production efficiency, flammability, mild and sustained burning, and higher instantaneous combustion efficiency. This study utilized scientific data to demonstrate that A. stolonifera could be used as excellent moxa, and the quality of 3-year moxa surpassed that of 1-year moxa. The research results provide a scientific basis for the in-depth development of A. stolonifera moxa and the improvement of moxa quality standards.
Artemisia
;
Hot Temperature
;
Moxibustion
;
Plant Leaves
3.Anti-inflammatory material basis and mechanism of Artemisia stolonifera based on UPLC-Q-TOF-MS combined with network pharmacology and molecular docking.
Le CHEN ; Yun-Yun ZHU ; Li-Ping KANG ; Chao-Wei GUO ; Yu-Qiao WANG ; Shuang-Ge LI ; Hong-Zhi DU ; Da-Hui LIU
China Journal of Chinese Materia Medica 2023;48(14):3701-3714
This study aimed to explore the anti-inflammatory material basis and molecular mechanism of Artemisia stolonifera based on the analysis of the chemical components in different extracted fractions of A. stolonifera and their antioxidant and anti-inflammatory effects in combination with network pharmacology and molecular docking. Thirty-two chemical components were identified from A. stolonifera by ultra-performance liquid chromatography coupled to tandem quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS). Among them, there were 7, 21 and 22 compounds in water, n-butanol and ethyl acetate fractions, respectively. The antio-xidant capacity of different extracted fractions was evaluated by measuring their scavenging ability against 1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl(DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid)(ABTS) free radicals and total antioxidant capacity [ferric reducing antioxidant power(FRAP) assay]. The inflammatory model of RAW264.7 cells was induced by lipopolysaccharide(LPS), and the levels of nitrite oxide(NO), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6) in the supernatant and the mRNA expression of related inflammatory factors in cells were used to evaluate the anti-inflammatory effects. The results revealed that ethyl acetate fraction of A. stolonifera was the optimal antioxidant and anti-inflammatory fraction. By network pharmacology, it was found that flavonoids such as rhamnazin, eupatilin, jaceosidin, luteolin and nepetin could act on key targets such as TNF, serine/threonine protein kinase 1(AKT1), tumor protein p53(TP53), caspase-3(CASP3) and epidermal growth factor receptor(EGFR), and regulate the phosphatidylinositol-3-kinase-protein kinase B(PI3K-AKT) and mitogen-activated protein kinase(MAPK) signaling pathways to exert the anti-inflammatory effects. Molecular docking further indicated excellent binding properties between the above core components and core targets. This study preliminarily clarified the anti-inflammatory material basis and mechanism of ethyl acetate fraction of A. stolonifera, providing a basis for the follow-up clinical application of A. stolonifera and drug development.
Antioxidants/chemistry*
;
Molecular Docking Simulation
;
Artemisia
;
Network Pharmacology
;
Phosphatidylinositol 3-Kinases
;
Anti-Inflammatory Agents/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Interleukin-6
4.Medicinal plant microbiome: advances and prospects.
Hong-Yang WANG ; Chuan-Zhi KANG ; Yue-Feng WANG ; Sheng WANG ; Tie-Lin WANG ; Yan ZHANG ; Li ZHOU ; Da-Hui LIU ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2022;47(20):5397-5405
Medicinal plants are the main source of clinical medication in traditional Chinese medicine(TCM). China has achieved large-scale cultivation and production of medicinal plants. As an important resource for the sustainable development of agriculture in the future, microorganisms can also promote the green, ecological and high-quality development of Chinese medicine agriculture. However, research on the medicinal plant microbiome is still limited. Therefore, based on the development timeline of microbiome research, the present study reviewed the origin, technology, and hotspots of microbiome research and proposed some suggestions for future research according to the advances in medicinal plant microbiome.(1)Systematic investigation of medicinal plant microbiome on the species, genus, and family levels should be carried out on the medicinal plants of different chemotypes in order to reveal the coevolution of the microorganisms and their host plants.(2)Spatial and temporal research on medicinal plant microbiome should be performed to reveal the effects of microorganisms on the growth, development, and secondary metabolite accumulation of medicinal plants, as well as the underlying mechanisms.(3)Model medicinal plant species should be selected and microorganism-plant interaction research models should be established.(4)Core microbiome of medicinal plants should be explored for the future application of crucial microbes in the sustaina-ble agriculture of Chinese medicine.(5)Breeding of medicinal plant-associated microbes should be carried out to lay the foundation for novel medicinal plant breeding strategies.(6)High-throughput sequencing, traditional incubation, and isolation of microbes should be combined to study medicinal plant microbiome, thereby promoting the exploitation and application of uncultured microbial strains.(7)Platforms for the preservation of medicinal plant-associated microbe strains and data of their metabolites should be established and the exchange of information and cooperation between these platforms should be subsequently enhanced. With these suggestions, the efficient and rapid development of medicinal plant microbiome research is expected to be promoted.
Plants, Medicinal
;
Plant Breeding
;
Medicine, Chinese Traditional
;
Agriculture
;
Microbiota
5.Research strategies for endophytes in medicinal plants based on high-throughput sequencing and traditional culture and isolation methods.
Hong-Yang WANG ; Chuan-Zhi KANG ; Sheng WANG ; Dai-Quan JIANG ; Zheng PENG ; Yang XU ; Yong-Xi DU ; Yan ZHANG ; Da-Hui LIU ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2021;46(8):1910-1919
The research on endophytes of medicinal plants mainly relies on the traditional culture and isolation methods. Because of their functions such as promoting host growth, improving stress resistance, promoting the accumulation of medicinal active ingredients or directly producing medicinal active ingredients, the endophytes of medicinal plants have gradually attracted wide attention. However, it was found that the strains isolated by traditional methods were not the true dominant endophytes of medicinal plants by comparing the results of traditional culture isolation with high-throughput sequencing. The blind and random nature of traditional methods leads to the lack of standards in terms of medium selection, culture time and interaction between species. On the contrary, high-throughput sequencing technology is an emerging molecular biology technology developed in recent decades. Due to its high resolution level and indepen-dent culture, it can be used for thorough analysis of the community structure and diversity of environmental microorganisms. Therefore, we proposed the strategy of using high-throughput sequencing technology to guide the traditional culture and isolation of endophytes from medicinal plants. Firstly, the endophytic structure and diversity of medicinal plants were completely clear by high-throughput sequencing technology, and the dominant endophytes of the host were unequivocal. Then according to the characteristics of each dominant endophytes design or query suitable medium for its growth to culture and isolation. Finally, the function of the isolates was studied. This method can prevent researchers from missing out on the important functional strains of the host, expand the research scope of endophytes of medicinal plants, and facilitate the in-depth excavation and utilization of endophytes of medicinal plants.
Endophytes/genetics*
;
High-Throughput Nucleotide Sequencing
;
Plants, Medicinal
;
Research Design
6.Effect of Safety Bladder Capacity Catheterization on Lower Urinary Tract Function in Patients With Suprasacral Spinal Cord Injury
Da-wei ZHANG ; Hong-jun ZHU ; Xiao-yan FENG ; Yu-hong CHEN ; Yi LIU ; Kang-wu CHEN ; Ping CAI
Chinese Journal of Rehabilitation Theory and Practice 2021;27(6):692-697
Objective:To evaluate the effect of safety bladder capacity catheterization on lower urinary tract function in patients with supracacral spinal cord injury. Methods:A total of 60 patients with lower urinary tract dysfunction after suprasacral spinal cord injury in our hospital from January to December, 2019 were divided into control group (
7.Immunogenicity of Whole
Shi Qi XIAO ; Da XU ; Hong Yang DUAN ; Xue Ting FAN ; Gui Lian LI ; Wen ZHANG ; Ma Chao LI ; Na HAN ; Xin Yao LI ; Na LI ; Li Lan ZHAO ; Xiu Qin ZHAO ; Kang Lin WAN ; Hai Can LIU ; Wen Hai FENG
Biomedical and Environmental Sciences 2021;34(7):528-539
Objectives:
To evaluate the immunogenicity of
Methods:
Protein extracts from
Results:
Immunization with
Conclusion
This is the advanced study to investigate the immunogenicity of
Animals
;
Antibodies, Bacterial/immunology*
;
Antigens, Bacterial/immunology*
;
Bacterial Proteins/immunology*
;
Cross Reactions
;
Cytokines/immunology*
;
Female
;
Genome, Bacterial
;
Immunoglobulin G/immunology*
;
Immunoglobulin M/immunology*
;
Macrophages/immunology*
;
Mice, Inbred BALB C
;
Mycobacterium avium Complex/immunology*
;
Mycobacterium tuberculosis/immunology*
;
Tuberculosis Vaccines/administration & dosage*
;
Whole Genome Sequencing
8.Morphological comparison of glandular and non-glandular trichomes between Artemisia stolonifera and A. argyi.
Dan-Dan LUO ; Hua-Sheng PENG ; Li-Ping KANG ; Yu-Huan MIAO ; Da-Hui LIU ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2021;46(13):3319-3329
The basic features of glandular and non-glandular trichomes on leaves of Artemisia argyi( germplasms from Qichun,Ningbo,Tangyin,and Anguo,respectively) and related species A. stolonifera were observed by scanning electron microscopy( SEM)and compared. There were significant differences in trichome characteristics of leaves at all parts of A. argyi and A. stolonifera,which were closely related to the difference in chemical components. The length of non-glandular trichomes and size of glandular trichomes on middle leaves were the stablest. A. argyi and A. stolonifera can be distinguished by the density of glandular trichome. Additionally,the four germplasms of A. argyi can be discriminated via the density and curvature of non-glandular trichome. The density of non-glandular trichomes was the highest in A. stolonifera. For A. argyi,the germplasm from Qichun had the highest density of non-glandular trichomes on the abaxial surfaces of upper leaves and that from Ningbo had the largest non-glandular trichome curvature. With regard to the germplasm from Anguo,the T-shaped non-glandular trichomes of long stalks on the adaxial surfaces of the middle leaves were lodging-susceptible,and those with slender heads were wave-like. Statistics results of A. argyi and A. stolonifera are as follows: largest glandular trichomes on the adaxial and abaxial surfaces and highest glandular trichome density on the abaxial surfaces of the lower leaves in A. argyi germplasm from Ningbo,highest density of non-glandular trichomes on the abaxial surfaces of upper leaves in A. stolonifera,and highest density of glandular trichomes and non-glandular trichomes on the adaxial surfaces of the upper leaves in A. argyi germplasm from Qichun. According to the observation result under fluorescence microscope( FM),flavonoids were closely related to the size and density of non-glandular trichomes and size of glandular trichomes. The fluorescence intensity was the strongest and fluorescence area was the largest for flavonoids in A. argyi germplasms from Qichun and Tangyin,while the fluorescence for flavonoids was the weakest in A. stolonifera. It was the first time to observe and analyze the trichome ultrastructure of A. argyi leaves at different positions by SEM and FM. This study clarifies the differences between A. stolonifera and four famous A. argyi germplasms,which provides new evidence for the microscopic identification of A. argyi and its related species and serves as a reference for the study of the relationship of A. argyi structure with its components and functions.
Artemisia
;
Flavonoids
;
Microscopy, Electron, Scanning
;
Plant Leaves
;
Trichomes
9.Analysis and evaluation of volatile oil content in leaves of different Artemisia argyi germplasm resources.
Chang-Jie CHEN ; Dan-Dan LUO ; Yu-Huan MIAO ; Li-Ping KANG ; Lan-Ping GUO ; Da-Hui LIU ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2021;46(15):3814-3823
Volatile oil is the main effective component and an important quality indicator of Artemisia argyi leaves. In this study, 100 germplasm resources of A. argyi were collected from all the related habitats in China. The total volatile oils in A. argyi leaves were extracted by steam distillation and the content was determined by GC-MS. The result demonstrated that the content of total volatile oils was in the range of 0.53%-2.55%, with the average of 1.43%. A total of 39 chemical constituents were identified from the volatile oils, including 13 shared by the 100 germplasm resources. Clustering analysis of the 39 constituents showed that the 100 A. argyi samples were categorized into groups Ⅰ(9), Ⅱ(2), Ⅲ(66) and Ⅳ(23), and group Ⅲ had the most volatile medicinal components, with the highest content. Five principal components(PCs) were extracted from 13 shared constituents, which explained 73.454% of the total variance. PC1, PC2, and PC3 mainly reflected the pharmacological activity of volatile oils and the rest two the aroma information. The volatile oils identified in this study lay a foundation for variety breeding of and rational utilization of volatile oils in A. argyi leaves.
Artemisia
;
Distillation
;
Oils, Volatile
;
Plant Breeding
;
Plant Leaves
10.Research progress and prospect of endophytes from medicinal plant Atractylodes lancea.
Hong-Yang WANG ; Dai-Quan JIANG ; Chuan-Zhi KANG ; Sheng WANG ; Chao-Geng LYU ; Yan ZHANG ; Da-Hui LIU ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2021;46(19):4930-4935
The endophytes of medicinal plants play an important role in promoting the quality formation of the host. Therefore, this paper made a review of endophytes of medicinal plant Atractylodes lancea. According to previous studies, A. lancea boasts endophytes, such as fungi, bacteria, and actinomycetes, among which the beneficial microorganisms help the growth and development of A. lancea. There is a close interaction between the volatile oil of A. lancea and endophytes. Different endophytes vary in regulating the composition and content of the volatile oil of A. lancea, which might contribute to the quality formation of A. lancea. However, the information of the endophytic flora of A. lancea obtained by traditional culture and isolation is not enough to reflect the real situation of the endophytes of A. lancea. Little is known about the endophytes of A. lancea from different chemical types and different habitats, which is not conducive to the study of the ecological relationship between A. lancea and endophytes and limits the development and utilization of the endophytes. Therefore, at the end of this paper, the authors put forward suggestions for future research on endophytes in A. lancea, including:(1)mining the core endophyte resources of A. lancea by combining high-throughput sequencing with traditional culture and isolation;(2)exploring the relationship between the diversity of endophytes and chemical types of A. lancea;(3)strengthening the application of endophytes in A. lancea cultivation, in order to facilitate the cultivation efficiency and quality of A. lancea.
Atractylodes
;
Endophytes
;
Fungi
;
Oils, Volatile
;
Plants, Medicinal

Result Analysis
Print
Save
E-mail