1.The role of 8-OxoG and its repair systems in liver diseases progression: responsible mechanisms and promising natural products.
Ying ZHENG ; Junxin CHEN ; Ze LIU ; Kaibo WANG ; Hao ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(7):815-823
The accumulation of deoxyribonucleic acid (DNA) oxidative damage mediated by reactive oxygen species (ROS) is closely associated with liver diseases. 8-Oxoguanine (8-OxoG), a prevalent DNA oxidation product, plays a significant role in liver disease progression. The base excision repair (BER) pathway, comprising over 30 proteins including 8-OxoG DNA glycosylase1 (OGG1), MutY homolog (MUTYH), and MutT homolog protein 1 (MTH1), is responsible for the clearance and mismatch repair of 8-OxoG. Abnormally high levels of 8-OxoG and dysregulated expression and function of 8-OxoG repair enzymes contribute to the onset and development of liver diseases. Consequently, targeting the 8-OxoG production and repair system with agonists or inhibitors may offer a promising approach to liver disease treatment. This review summarizes the impact of 8-OxoG accumulation and dysregulated repair enzymes on various liver diseases, including viral liver disease, alcoholic liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), cholestatic liver disease (CLD), liver fibrosis, cirrhosis, and liver cancer. Additionally, we review natural constituents as potential therapeutic agents that regulate 8-OxoG production, repair enzymes, and repair system-related signal pathways in oxidative damage-induced liver diseases.
Humans
;
Liver Diseases/genetics*
;
Biological Products/pharmacology*
;
DNA Repair/drug effects*
;
Guanine/metabolism*
;
Animals
;
Disease Progression
;
DNA Damage
;
Oxidative Stress
2.Progress in research on general anesthesia in rabbits
Jing ZHENG ; Zhi HUANG ; Rong SHEN ; Chun FENG ; Kaibo GAO
Chinese Journal of Comparative Medicine 2017;27(7):107-110
A safe and effective anesthesia technique is necessary in ensuring a successful surgical operation in rabbit experiments.A variety of anesthesiamethod have been reported, yet, no one matured and widely accepted anesthesiamethod is available so far.This article aims to provide an information basis for further research on general anesthesia in rabbits by reviewing the literature on single and combined anesthesia techniques in rabbits reported in the last decade.
3.Preparation and lymphatic targeting research of targeting antitumor drug: pectin-adriamycin conjugates.
Ming CHENG ; Ping XIE ; Xiaohai TANG ; Jie ZHANG ; Yongmei XIE ; Kaibo ZHENG ; Jun HE
Journal of Biomedical Engineering 2009;26(3):569-574
Pectin, a polysaccharide extracted from the cell wall of plants, was used as the drug carrier to synthesize the pectin-adriamycin conjugates (P(A)n). The structure of the conjugates was confirmed by UV and IR. The degree of esterification (DE) of the pectin was assessed, and it was found that DE significantly influenced the carboxy group contents, inherent viscosity and galacturonic acid contents of the pectin. The results of drug release test in vitro showed that the conjugate was stable in normal saline, but was gradually enzymolyzed to release the adriamycin in blood plasma and in lymph nodes. The results of lymphatic targeting study of P(A), demonstrated that the modification of DE or drug coupling capacity of pectin significantly influenced the lymphatic targeting characteristics of P (A)n. The adriamycin concentration of lymph nodes was 208 times higher than that of plasma after local injection of the P(A)n, of which the adriamycin content was 27.9% and the pectin was deesterificated 120 minutes by the use of hypothermy alkaline deesterification method.
Animals
;
Antibiotics, Antineoplastic
;
administration & dosage
;
pharmacokinetics
;
Doxorubicin
;
administration & dosage
;
pharmacokinetics
;
Drug Carriers
;
chemistry
;
Esterification
;
Lymph Nodes
;
metabolism
;
Pectins
;
administration & dosage
;
pharmacokinetics
;
Rabbits
4.Progress in the research of chemical structural modification of ursolic acid and structure-activity relationship
Kaibo ZHENG ; Chengbin SUN ; Haili MAO ; Zaibo YANG
Journal of China Pharmaceutical University 2009;40(6):580-584
Ursolic acid, a pentacyclic triterpene compound, naturally occurs in a large variety of plants, has at-tracted considerable interest owing to its significant biological activities. In recent years, more and more scientists have been working on the structural modification at the C-3 position , C_(12)-C_(13) double bond or C-28 position of ur-solic acid in order to improve their biological activities. Herein a brief introduction of the recent progresses on the chemical structural modification and the structure-activity relationship of ursolic acid and its derivatives are re-viewed.

Result Analysis
Print
Save
E-mail