1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Clinical characteristics and prognosis of chronic disseminated candidiasis in children with acute leukemia following chemotherapy: a multicenter clinical study.
Xin-Hong JIANG ; Pei-Jun LIU ; Chun-Ping WU ; Kai-Zhi WENG ; Shu-Quan ZHUANG ; Shu-Xian HUANG ; Xiao-Fang WANG ; Yong-Zhi ZHENG
Chinese Journal of Contemporary Pediatrics 2025;27(5):540-547
OBJECTIVES:
To investigate the clinical characteristics and prognosis of chronic disseminated candidiasis (CDC) in children with acute leukemia (AL) following chemotherapy.
METHODS:
A retrospective analysis was conducted on children diagnosed with CDC (including confirmed, clinically diagnosed, and suspected cases) after AL chemotherapy from January 2015 to December 2023 at Fujian Medical University Union Hospital, Zhangzhou Municipal Hospital, and Quanzhou First Hospital Affiliated to Fujian Medical University. Clinical characteristics and prognosis were analyzed.
RESULTS:
The incidence of CDC in children with AL following chemotherapy was 1.92% (32/1 668). Among the children with acute lymphoblastic leukemia, the incidence of CDC in the high-risk group was significantly higher than in the low-risk group (P=0.002). All patients presented with fever unresponsive to antibiotics during the neutropenic period, with 81% (26/32) involving the liver. C-reactive protein (CRP) levels were significantly elevated (≥50 mg/L) in 97% (31/32) of the patients. The efficacy of combined therapy with liposomal amphotericin B and caspofungin or posaconazole for CDC was 66% (19/29), higher than with caspofungin (9%, 2/22) or liposomal amphotericin B (18%, 2/11) monotherapy. The overall cure rate was 72% (23/32). The proportion of patients with CRP ≥50 mg/L and/or a positive β-D-glucan test for more than 2 weeks and breakthrough infections during caspofungin treatment was significantly higher in the treatment failure group compared to the successful treatment group (P<0.05).
CONCLUSIONS
CDC in children with AL after chemotherapy may be associated with prolonged neutropenia due to intensive chemotherapy. Combination antifungal regimens based on liposomal amphotericin B have a higher cure rate, while persistently high CRP levels and positive β-D-glucan tests may indicate poor prognosis.
Adolescent
;
Child
;
Child, Preschool
;
Female
;
Humans
;
Infant
;
Male
;
Antifungal Agents/therapeutic use*
;
Candidiasis/diagnosis*
;
Chronic Disease
;
Leukemia/complications*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications*
;
Prognosis
;
Retrospective Studies
7.Prognostic value of serum CD4+ and NK cells for the treatment response in children with aplastic anemia.
Chun-Can WU ; Mei YAN ; Hailiguli NURIDDIN ; Xu-Kai MA ; Yu LIU
Chinese Journal of Contemporary Pediatrics 2025;27(6):690-695
OBJECTIVES:
To evaluate the clinical value of CD4⁺ cell percentage (CD4⁺%) and NK cell percentage (NK%) in predicting treatment outcomes in children with aplastic anemia (AA), providing a reference for precise diagnosis and treatment.
METHODS:
This retrospective study analyzed the clinical data of AA children treated with cyclosporine A at the First Affiliated Hospital of Xinjiang Medical University from January 2019 to April 2024. The study involved 48 AA children as the observation group and 50 children undergoing medical check-ups during the same period as the control group. Lymphocyte subset data were collected from both groups to analyze differences and their relationship with treatment efficacy. Based on hematological responses, the observation group was divided into an effective group of 18 patients (HR group, including complete and partial remission) and an ineffective group of 30 patients (NHR group, including non-remission).
RESULTS:
Univariate analysis showed that NK% in the observation group was significantly lower than that in the control group (P<0.05). The observation group was followed up for 3 months. The HR group had a lower CD4⁺% than the NHR group (P=0.018) and a higher NK% than the NHR group (P=0.029). Multivariate logistic regression analysis indicated that a high CD4⁺% was a risk factor for poor treatment efficacy (OR=1.062), whereas a high NK% was a protective factor (OR=0.820). The area under the curve for the prediction of HR in pediatric AA by combining CD4⁺% and NK% was 0.812.
CONCLUSIONS
A higher CD4⁺% at diagnosis is a predictor of poor treatment response, whereas a higher NK% is associated with better outcomes.
Humans
;
Anemia, Aplastic/blood*
;
Male
;
Female
;
Killer Cells, Natural
;
Child
;
Retrospective Studies
;
Child, Preschool
;
Prognosis
;
Adolescent
;
CD4-Positive T-Lymphocytes
;
Infant
8.Clinical Features and Prognosis of Acute T-cell Lymphoblastic Leukemia in Children——Multi-Center Data Analysis in Fujian
Chun-Ping WU ; Yong-Zhi ZHENG ; Jian LI ; Hong WEN ; Kai-Zhi WENG ; Shu-Quan ZHUANG ; Xing-Guo WU ; Xue-Ling HUA ; Hao ZHENG ; Zai-Sheng CHEN ; Shao-Hua LE
Journal of Experimental Hematology 2024;32(1):6-13
Objective:To evaluate the efficacy of acute T-cell lymphoblastic leukemia(T-ALL)in children and explore the prognostic risk factors.Methods:The clinical data of 127 newly diagnosed children with T-ALL admitted to five hospitals in Fujian province from April 2011 to December 2020 were retrospectively analyzed,and compared with children with newly diagnosed acute precursor B-cell lymphoblastic leukemia(B-ALL)in the same period.Kaplan-Meier analysis was used to evaluate the overall survival(OS)and event-free survival(EFS),and COX proportional hazard regression model was used to evaluate the prognostic factors.Among 116 children with T-ALL who received standard treatment,78 cases received the Chinese Childhood Leukemia Collaborative Group(CCLG)-ALL 2008 protocol(CCLG-ALL 2008 group),and 38 cases received the China Childhood Cancer Collaborative Group(CCCG)-ALL 2015 protocol(CCCG-ALL 2015 group).The efficacy and serious adverse event(SAE)incidence of the two groups were compared.Results:Proportion of male,age ≥ 10 years old,white blood cell count(WBC)≥ 50 × 109/L,central nervous system leukemia,minimal residual disease(MRD)≥ 1%during induction therapy,and MRD ≥ 0.01%at the end of induction in T-ALL children were significantly higher than those in B-ALL children(P<0.05).The expected 10-year EFS and OS of T-ALL were 59.7%and 66.0%,respectively,which were significantly lower than those of B-ALL(P<0.001).COX analysis showed that WBC ≥ 100 x 109/L at initial diagnosis and failure to achieve complete remission(CR)after induction were independent risk factors for poor prognosis.Compared with CCLG-ALL 2008 group,CCCG-ALL 2015 group had lower incidence of infection-related SAE(15.8%vs 34.6%,P=0.042),but higher EFS and OS(73.9%vs 57.2%,PEFS=0.090;86.5%vs 62.3%,PoS=0.023).Conclusions:The prognosis of children with T-ALL is worse than children with B-ALL.WBC ≥ 100 × 109/L at initial diagnosis and non-CR after induction(especially mediastinal mass has not disappeared)are the risk factors for poor prognosis.CCCG-ALL 2015 regimen may reduce infection-related SAE and improve efficacy.
9.The Factors Related to Treatment Failure in Children with Acute Lymphoblastic leukemia——Analysis of Multi-Center Data from Real World in Fujian Province
Chun-Xia CAI ; Yong-Zhi ZHENG ; Hong WEN ; Kai-Zhi WENG ; Shu-Quan ZHUANG ; Xing-Guo WU ; Shao-Hua LE ; Hao ZHENG
Journal of Experimental Hematology 2024;32(6):1656-1664
Objective:To analyze the related factors of treatment failure in children with acute lymphoblastic leukemia (ALL)in real-world.Methods:The clinical data of 1414 newly diagnosed children with ALL admitted to five hospital in Fujian province from April 2011 to December 2020 were retrospectively analyzed.Treatment failure was defined as relapse,non-relapse death,and secondary tumor.Results:Following-up for median time 49.7 (0.1-136. 9)months,there were 269 cases (19.0%)treatment failure,including 140 cases (52.0%)relapse,and 129 cases (48.0%)non-relapse death.Cox univariate and multivariate analysis showed that white WBC≥50 ×109/L at newly diagnosis,acute T-cell lymphoblastic leukemia (T-ALL),BCR-ABL1,KMT2A-rearrangement and poor early treatment response were independent risk factor for treatment failure (all HR>1.000,P<0.05).The 5-year OS of 140 relapsed ALL patients was only 23.8%,with a significantly worse prognosis for very early relapse (relapse time within 18 months of diagnosis).Among 129 patients died from non-relapse death,71 cases (26.4%)were died from treatment-related complications,56 cases (20.8%)died from treatment abandonment,and 2 cases (0.7%)died from disease progression.Among them,treatment-related death were significantly correlated with chemotherapy intensity,while treatment abandonment were mainly related to economic factors.Conclusion:The treatment failure of children with ALL in our province is still relatively high,with relapse being the main cause of treatment failure,while treatment related death and treatment abandonment caused by economic factors are the main causes of non-relapse related death.
10.Safety of high-carbohydrate fluid diet 2 h versus overnight fasting before non-emergency endoscopic retrograde cholangiopancreatography: A single-blind, multicenter, randomized controlled trial
Wenbo MENG ; W. Joseph LEUNG ; Zhenyu WANG ; Qiyong LI ; Leida ZHANG ; Kai ZHANG ; Xuefeng WANG ; Meng WANG ; Qi WANG ; Yingmei SHAO ; Jijun ZHANG ; Ping YUE ; Lei ZHANG ; Kexiang ZHU ; Xiaoliang ZHU ; Hui ZHANG ; Senlin HOU ; Kailin CAI ; Hao SUN ; Ping XUE ; Wei LIU ; Haiping WANG ; Li ZHANG ; Songming DING ; Zhiqing YANG ; Ming ZHANG ; Hao WENG ; Qingyuan WU ; Bendong CHEN ; Tiemin JIANG ; Yingkai WANG ; Lichao ZHANG ; Ke WU ; Xue YANG ; Zilong WEN ; Chun LIU ; Long MIAO ; Zhengfeng WANG ; Jiajia LI ; Xiaowen YAN ; Fangzhao WANG ; Lingen ZHANG ; Mingzhen BAI ; Ningning MI ; Xianzhuo ZHANG ; Wence ZHOU ; Jinqiu YUAN ; Azumi SUZUKI ; Kiyohito TANAKA ; Jiankang LIU ; Ula NUR ; Elisabete WEIDERPASS ; Xun LI
Chinese Medical Journal 2024;137(12):1437-1446
Background::Although overnight fasting is recommended prior to endoscopic retrograde cholangiopancreatography (ERCP), the benefits and safety of high-carbohydrate fluid diet (CFD) intake 2 h before ERCP remain unclear. This study aimed to analyze whether high-CFD intake 2 h before ERCP can be safe and accelerate patients’ recovery.Methods::This prospective, multicenter, randomized controlled trial involved 15 tertiary ERCP centers. A total of 1330 patients were randomized into CFD group ( n = 665) and fasting group ( n = 665). The CFD group received 400 mL of maltodextrin orally 2 h before ERCP, while the control group abstained from food/water overnight (>6 h) before ERCP. All ERCP procedures were performed using deep sedation with intravenous propofol. The investigators were blinded but not the patients. The primary outcomes included postoperative fatigue and abdominal pain score, and the secondary outcomes included complications and changes in metabolic indicators. The outcomes were analyzed according to a modified intention-to-treat principle. Results::The post-ERCP fatigue scores were significantly lower at 4 h (4.1 ± 2.6 vs. 4.8 ± 2.8, t = 4.23, P <0.001) and 20 h (2.4 ± 2.1 vs. 3.4 ± 2.4, t= 7.94, P <0.001) in the CFD group, with least-squares mean differences of 0.48 (95% confidence interval [CI]: 0.26–0.71, P <0.001) and 0.76 (95% CI: 0.57–0.95, P <0.001), respectively. The 4-h pain scores (2.1 ± 1.7 vs. 2.2 ± 1.7, t = 2.60, P = 0.009, with a least-squares mean difference of 0.21 [95% CI: 0.05–0.37]) and positive urine ketone levels (7.7% [39/509] vs. 15.4% [82/533], χ2 = 15.13, P <0.001) were lower in the CFD group. The CFD group had significantly less cholangitis (2.1% [13/634] vs. 4.0% [26/658], χ2 = 3.99, P = 0.046) but not pancreatitis (5.5% [35/634] vs. 6.5% [43/658], χ2 = 0.59, P = 0.444). Subgroup analysis revealed that CFD reduced the incidence of complications in patients with native papilla (odds ratio [OR]: 0.61, 95% CI: 0.39–0.95, P = 0.028) in the multivariable models. Conclusion::Ingesting 400 mL of CFD 2 h before ERCP is safe, with a reduction in post-ERCP fatigue, abdominal pain, and cholangitis during recovery.Trail Registration::ClinicalTrials.gov, No. NCT03075280.

Result Analysis
Print
Save
E-mail