1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Establishment of a method for acquisition, perfusion, preservation and transportation of the genetically modified donor pig kidneys
Feiyan ZHU ; Yaobo ZHAO ; Hongfang ZHAO ; Taiyun WEI ; Wenjie CHENG ; Kai LIU ; Yuexiao BAO ; Yaling LOU ; Hongjiang WEI ; Kaixiang XU
Organ Transplantation 2025;16(2):272-279
Objective To establish a method for acquisition, perfusion, preservation and transportation of the genetically modified pig kidneys. Methods An eight genetically modified pig was utilized as experimental subject. Prior to kidneys procurement, the health status of the pig was assessed through hematology examination, and the vascular structure of the kidneys was examined using imaging techniques. Following kidneys acquisition, the pig kidneys were perfused and subsequently packaged into the cryogenic storage container labeled "For Organ Transportation Only" for interprovincial transport after communicating the transportation process with transportation department. To evaluate pathological damage to the pig kidneys, a serious of methods were employed such as hematoxylin-eosin (HE) staining, real-time fluorescent quantitative polymerase chain reaction (RT-qPCR), terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) fluorescence staining and enzyme-linked immune absorbent assay (ELISA). Results The preoperative examination of the eight genetically modified pig showed that the serum creatinine was 73.2 μmol/L, blood urea nitrogen was 2.8 mmol/L and hemoglobin was 116 g/L, all within the normal range, indicating normal renal function. CT angiography revealed no lesions in the pig kidneys, and no dilation, stenosis or premature branching of the blood vessels. The total time of obtaining the left and right kidneys from the eight genetically modified pig was (125 ± 10) min, with a blood loss of (20 ± 2) mL. The warm ischemia times were 3 min and 7 min, respectively. The perfusion and trimming times of the left and right kidneys were 36 min and 41 min, respectively. After perfusion, both kidneys were white and moist. The cold preservation and transportation time was 8 h. HE staining showed that some glomeruli were shrunk, and the lumens of the surrounding renal tubules were slightly depressed and swollen with partial inner membrane shedding and microvacuoles formed when the kidneys were preserved for 8 h. The level of cysteinyl aspartate-specific proteinase-3 messenger RNA in the kidneys tissue gradually increased with the extension of cold preservation time after 2 h (P<0.05). TUNEL fluorescence staining showed that only a small number of cells underwent apoptosis after 8 h of cold preservation, which was not significantly different from that at 0 h (P>0.05). ELISA results showed that the contents of lactate dehydrogenase (LDH) and creatinine in the preservation solution remained relatively stable, but the content of kidney injury molecule 1 (KIM-1) gradually increased with the extension of preservation time, suggesting that the pig kidneys had mild injury. Conclusions By establishing methods for acquisition, perfusion, preservation and transportation of the kidneys from genetically modified donor pig, it is possible to effectively and reliably use genetically modified pig kidneys for xenotransplantation.
3.Regulatory effect of electroacupuncture at "Neiguan" (PC6) on mitochondrial autophagy during the ischemia and reperfusion phases in rats with myocardial ischemia-reperfusion injury.
Qirui YANG ; Xinghua QIU ; Xingye DAI ; Daonan LIU ; Baichuan ZHAO ; Wenyi JIANG ; Yanhua SONG ; Tong PU ; Kai CHENG
Chinese Acupuncture & Moxibustion 2025;45(5):646-656
OBJECTIVE:
To investigate the regulatory effect of electroacupuncture (EA) at "Neiguan" (PC6) on mitochondrial autophagy in rats with myocardial ischemia-reperfusion injury (MIRI) at different phases (ischemia and reperfusion phases), and to explore the bidirectional regulatory effects of EA at "Neiguan" (PC6) and its potential mechanism.
METHODS:
Forty-five male SD rats were randomly divided into 6 groups according to the random number table method, namely, sham-operation group (n=9), model-A group (n=6), model-B group (n=9), EA-A1 group (n=6), EA-B1 group (n=6), and EA-B2 group (n=9). Except the rats in the sham-operation group, the MIRI model was established in the other groups with the physical ligation and tube pushing method. In the model-A group, the samples were collected directly after ligation, and in the model-B group, the samples were collected after ligation and reperfusion. In the EA-A1 group, EA was delivered while the ligation was performed, and afterwards, the samples were collected. In the EA-B1 group, while the ligation was performed, EA was operated at the same time, and after reperfusion, the samples were collected. In the EA-B2 group, during ligation and the opening of the left anterior descending branch of the coronary artery, EA was delivered, and after reperfusion, the samples were collected. EA was performed at bilateral "Neiguan" (PC6), with a disperse-dense wave, a frequency of 2 Hz/100 Hz, a current of 1 mA, and a duration of 30 min. HE staining was employed to observe the morphology of cardiomyocytes, TUNEL was adopted to detect the apoptosis of cardiomyocytes, transcriptome sequencing was to detect the differentially expressed genes in the left ventricle, JC-1 flow cytometry was to detect the mitochondrial membrane potential (MMP) of cardiomyocytes, Western blot was to detect the protein expression of phosphatase and tensin homolog-induced kinase 1 (Pink1), Parkin and p62 in the left ventricle of rats, and ELISA was to detect the levels of serum creatine kinase isoenzyme (CK-MB) and cardiac troponin I (cTn-I) in the rats.
RESULTS:
Compared with the sham-operation group, the cardiomyocytes of rats in the model-B group were severely damaged, with disordered arrangement, unclear boundaries, broken muscle fibers, edema and loose distribution; and the cardiomyocytes in the EA-B2 group were slightly damaged, the cell structure was partially unclear, the cells were arranged more regularly, and the intact cardiomyocytes were visible. Compared with the sham-operation group, the apoptosis of cardiomyocytes increased in the model-B group (P<0.001); and when compared with the model-B group, the apoptosis alleviated in the EA-B2 group (P<0.001). The differentially expressed genes among the EA-B2 group, the sham-operation group and the model-B group were closely related to cell autophagy and mitochondrial autophagy. Compared with the sham-operation group, MMP of cardiomyocytes was reduced (P<0.001), the protein expression of Pink1, Parkin, and p62 of the left ventricle and the levels of serum CK-MB and cTn-I were elevated in the model B group (P<0.001). In comparison with model-A group, the MMP of cardiomyocytes and the levels of serum CK-MB and cTn-I were reduced (P<0.001, P<0.05), and the protein expression of Pink1 in the left ventricle rose in the EA-A1 group (P<0.01). Compared with the model-B group, MMP of cardiomyocytes increased (P<0.001), the protein expression of Pink1, Parkin, and p62 of the left ventricle, and the levels of serum CK-MB and cTn-I decreased (P<0.001) in the EA-B1 group and the EA-B2 group. When compared with the EA-A1 group, MMP of cardiomyocytes increased (P<0.001), and the protein expression of Pink1, Parkin, and p62 of the left ventricle, and the levels of serum CK-MB and cTn-I decreased in the EA-B1 group (P<0.01).
CONCLUSION
EA at "Neiguan" (PC6) can ameliorate MIRI in rats, which may be achieved through the Pink1/Parkin-mediated mitochondrial autophagy pathway. EA can alleviate myocardial injury by enhancing mitochondrial autophagy at the ischemia phase, and it can reduce reperfusion injury by weakening mitochondrial autophagy at the reperfusion phase.
Animals
;
Electroacupuncture
;
Male
;
Myocardial Reperfusion Injury/metabolism*
;
Rats, Sprague-Dawley
;
Rats
;
Acupuncture Points
;
Autophagy
;
Humans
;
Mitochondria/genetics*
4.Coronary artery stenosis associated with right ventricular dysfunction in acute pulmonary embolism: A case-control study.
Yuejiao MA ; Jieling MA ; Dan LU ; Yinjian YANG ; Chao LIU ; Liting WANG ; Xijie ZHU ; Xianmei LI ; Chunyan CHENG ; Sijin ZHANG ; Jiayong QIU ; Jinghui LI ; Mengyi LIU ; Kai SUN ; Xin JIANG ; Xiqi XU ; Zhi-Cheng JING
Chinese Medical Journal 2025;138(16):2028-2036
BACKGROUND:
The potential impact of pre-existing coronary artery stenosis (CAS) on right ventricular (RV) function during acute pulmonary embolism (PE) episodes remains underexplored. This study aimed to investigate the association between pre-existing CAS and RV dysfunction in patients with acute PE.
METHODS:
In this multicenter, case-control study, 89 cases and 176 controls matched for age were enrolled at three study centers (Peking Union Medical College Hospital, Fuwai Hospital, and the Second Affiliated Hospital of Harbin Medical University) from January 2016 to December 2020. The cases were patients with acute PE with CAS, and the controls were patients with acute PE without CAS. Coronary artery assessment was performed using coronary computed tomographic angiography. CAS was defined as ≥50% stenosis of the lumen diameter in any coronary vessel >2.0 mm in diameter. Conditional logistic regression analysis was used to evaluate the association between CAS and RV dysfunction.
RESULTS:
The percentages of RV dysfunction (19.1% [17/89] vs. 44.6% [78/176], P <0.001) and elevated systolic pulmonary artery pressure (sPAP) (19.3% [17/89] vs. 39.5% [68/176], P = 0.001) were significantly lower in the case group than those in the control group. In the multivariable logistic regression model, CAS was independently and negatively associated with RV dysfunction (adjusted odds ratio [OR]: 0.367; 95% confidence interval [CI]: 0.185-0.728; P = 0.004), and elevated sPAP (OR: 0.490; 95% CI: 0.252-0.980; P = 0.035), respectively.
CONCLUSIONS
Pre-existing CAS was significantly and negatively associated with RV dysfunction and elevated sPAP in patients with acute PE. This finding provides new insights into RV dysfunction in patients with acute PE with pre-existing CAS.
Humans
;
Pulmonary Embolism/complications*
;
Case-Control Studies
;
Male
;
Ventricular Dysfunction, Right/physiopathology*
;
Female
;
Middle Aged
;
Aged
;
Coronary Stenosis/complications*
;
Logistic Models
;
Adult
5.Network pharmacology and animal experiments reveal molecular mechanisms of Cordyceps sinensis in ameliorating heart aging and injury in mice by regulating Nrf2/HO-1/NF-κB pathway.
Si-Yi LIU ; Yue TU ; Wei-Ming HE ; Wen-Jie LIU ; Kai-Zhi WEN ; Cheng-Juan LI ; Chao HAN ; Xin-Yu LIANG
China Journal of Chinese Materia Medica 2025;50(4):1063-1074
This study aims to explore the effects and mechanisms of the traditional Chinese medicine Cordyceps sinensis(CS) in ameliorating heart aging and injury in mice based on animal experiments and network pharmacology. A mouse model of heart aging was established by continuously subcutaneous injection of D-galactose(D-gal). Thirty mice were randomly assigned into a normal group, a model group, a low-dose CS(CS-L) group, a high-dose CS(CS-H) group, and a vitamin E(VE) group. Mice in these groups were administrated with normal saline, different doses of CS suspension, or VE suspension via gavage daily. After 60 days of treatment with D-gal and various drugs, all mice were euthanized, and blood and heart tissue samples were collected for determination of the indicators related to heart aging and injury in mice. Experimental results showed that both high and low doses of CS and VE ameliorated the aging phenotype, improved the heart index and myocardial enzyme spectrum, restored the expression levels of proteins associated with cell cycle arrest and senescence-associated secretory phenotypes(SASP), and alleviated the fibrosis and histopathological changes of the heart tissue in model mice. From the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP),259 active ingredients of CS were retrieved. From Gene Cards and OMIM, 2 568 targets related to heart aging were identified, and 133common targets shared by CS and heart aging were obtained. The Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes( KEGG) pathway enrichment revealed that the pathways related to heart aging involved oxidative stress,apoptosis, inflammation-related signaling pathways, etc. The animal experiment results showed that both high and low doses of CS and VE ameliorated oxidative stress and apoptosis in the heart tissue to varying degrees in model mice. Additionally, CS-H and VE activated the nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1(HO-1) pathway and inhibited the expression of key proteins in the nuclear factor-κB(NF-κB) pathway in the heart tissue of model mice. In conclusion, this study demonstrated based on network pharmacology and animal experiments that CS may alleviate heart aging and injury in aging mice by reducing oxidative stress,apoptosis, and inflammation in the heart via the Nrf2/HO-1/NF-κB pathway.
Animals
;
Cordyceps/chemistry*
;
Mice
;
NF-E2-Related Factor 2/genetics*
;
NF-kappa B/genetics*
;
Aging/genetics*
;
Male
;
Signal Transduction/drug effects*
;
Network Pharmacology
;
Drugs, Chinese Herbal/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Heart/drug effects*
;
Humans
;
Myocardium/metabolism*
;
Membrane Proteins/genetics*
6.Dahuang Zhechong Pills delay heart aging by reducing cardiomyocyte apoptosis via PI3K/AKT/HIF-1α signaling pathway.
Wen-Jie LIU ; Yue TU ; Wei-Ming HE ; Si-Yi LIU ; Liu-Yun-Xin PAN ; Kai-Zhi WEN ; Cheng-Juan LI ; Chao HAN
China Journal of Chinese Materia Medica 2025;50(5):1276-1285
This study aimed to investigate the effect of Dahuang Zhechong Pills(DHZCP) in delaying heart aging(HA) and explore the potential mechanism. Network pharmacology and molecular docking were employed to explore the targets and potential mechanisms of DHZCP in delaying HA. Furthermore, in vitro experiments were conducted with the DHZCP-containing serum to verify key targets and pathways in D-galactose(D-gal)-induced aging of cardiomyocytes. Active components of DHZCP were searched against the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCSMP), and relevant targets were predicted. HA-related targets were screened from the GeneCards, Online Mendelian Inheritance in Man(OMIM), and DisGeNET. The common targets shared by the active components of DHZCP and HA were used to construct a protein-protein interaction network in STRING 12.0, and core targets were screened based on degree in Cytoscape 3.9.1. Metaspace was used for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses of the core targets to predict the mechanisms. Molecular docking was performed in AutoDock Vina. The results indicated that a total of 774 targets of the active components of DHZCP and 4 520 targets related to HA were screened out, including 510 common targets. Core targets included B-cell lymphoma 2(BCL-2), serine/threonine kinase 1(AKT1), and hypoxia-inducible factor 1 subunit A(HIF1A). The GO and KEGG enrichment analyses suggested that DHZCP mainly exerted its effects via the phosphatidylinositol 3-kinase(PI3K)/AKT signaling pathway, HIF-1α signaling pathway, longevity signaling pathway, and apoptosis signaling pathway. Among the pathways predicted by GO and KEGG enrichment analyses, the PI3K/AKT/HIF-1α signaling pathway was selected for verification. The cell-counting kit 8(CCK-8) assay showed that D-gal significantly inhibited the proliferation of H9c2 cells, while DHZCP-containing serum increased the viability of H9c2 cells. SA-β-gal staining revealed a significant increase in the number of blue-green positive cells in the D-gal group, which was reduced by DHZCP-containing serum. TUNEL staining showed that DHZCP-containing serum decreased the number of apoptotic cells. After treatment with DHZCP-containing serum, the protein levels of Klotho, BCL-2, p-PI3K/PI3K, p-AKT1/AKT1, and HIF-1α were up-regulated, while those of P21, P16, BCL-2 associated X protein(Bax), and cleaved caspase-3 were down-regulated. The results indicated that DHZCP delayed HA via multiple components, targets, and pathways. Specifically, DHZCP may delay HA by reducing apoptosis via activating the PI3K/AKT/HIF-1α signaling pathway.
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Signal Transduction/drug effects*
;
Apoptosis/drug effects*
;
Myocytes, Cardiac/cytology*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Animals
;
Rats
;
Humans
;
Molecular Docking Simulation
;
Aging/metabolism*
;
Protein Interaction Maps/drug effects*
;
Heart/drug effects*
;
Network Pharmacology
7.Expression regulation of lipid metabolism gene ABHD5 in the mouse of testes.
Hao LIU ; Ze-Yu LI ; Kai-Cheng SHEN ; Yuan-di HUANG ; De-Xi SU ; Rui CHENG ; Ke XIONG ; Yi ZHI ; Wei-Bing LI
National Journal of Andrology 2025;31(6):492-498
OBJECTIVE:
To explore the expression regulation of lipid metabolism gene ABHD5 in testes.
METHODS:
Differential gene analysis was performed by integrating databases of TCGA and GTEx to identify the target gene ABHD5. The expression trends of ABHD5 gene in testicular carcinoma tissue were analyzed. Human testis single-cell atlases were obtained from the Human Protein Atlas and Male Health Atlas databases to determine the expression distribution of ABHD5 across different testicular cell types. Additionally, the GTEx database was utilized to visualize the expression pattern of ABHD5 in the testis, thereby enhancing the understanding of its transcriptional profile. The relationship between ABHD5 expression and age was assessed through integrated database analysis. Western blotting and immunofluorescence were performed to detect differential expressions of ABHD5 in testicular tissues of young and aged mice respectively.
RESULTS:
The TCGA database indicated that the expression of ABHD5 in human testicular carcinoma tissue was significantly lower than that in normal testicular tissue which showed a negative correlation with patient survival. ABHD5 was highly expressed in germ cells of the testis reveaked from Human Protein Atlas and Male Health Atlas databases. The stability of ABHD5 protein was crucial for testicular tissue, and its expression decreased with age. Furthermore, Western blot and immunofluorescence staining demonstrated that ABHD5 expression in the testicular tissue of aged mice was significantly lower than that in young mice.
CONCLUSION
ABHD5 plays an important role in testicular tissue, and may be inseparable from testicular tumors and reproductive aging. However, its mechanism of action remains to be further studied.
Male
;
Animals
;
Mice
;
Testis/metabolism*
;
Humans
;
Lipid Metabolism/genetics*
;
1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism*
;
Testicular Neoplasms/metabolism*
8.Early life Bifidobacterium bifidum BD-1 intervention alleviates hyperactivity of juvenile female rats with attention deficit hyperactivity disorder.
Yang YANG ; Kai WANG ; Jianxiu LIU ; Zhimo ZHOU ; Wen JIA ; Simou WU ; Jinxing LI ; Fang HE ; Ruyue CHENG
Journal of Southern Medical University 2025;45(4):702-710
OBJECTIVES:
To investigate the effects of early life intervention with Bifidobacterium bifidum BD-1 (B. bifidum BD-1) on hyperactivity in a female mouse model of attention deficit hyperactivity disorder (ADHD) and explore the underlying mechanisms.
METHODS:
Eight newborn female Wistar-Kyoto (WKY) rats and 6 spontaneous hypertensive rats (SHRs) were gavaged with saline and another 6 SHRs were gavaged with B. bifidum BD-1 (109 CFU) daily for 3 weeks. Open field test of the rats was conducted at 7 weeks, and fecal samples were collected at weaning (3 weeks) and at 7 weeks for 16S rRNA sequencing. Immunofluorescent staining was used to detect dopamine transporter (DAT) and tyrosine hydroxylase (Th) levels in the striatum and activated microglia in the prefrontal cortex. Treg cells in the mesenteric lymph nodes, spleen and blood were analyzed using flow cytometry.
RESULTS:
The SHRs traveled a significantly greater distance in open fields test than WKY rats, and this behavior was significantly attenuated by B. bifidum BD-1 intervention. The expression of DAT and Th in the striatum was significantly lower in the SHRs than in WKY rats, while B. bifidum BD-1 treatment obviously increased Th levels in the SHRs. B. bifidum BD-1 intervention significantly deceased the number of activated microglia and increased Treg cell counts in the spleen of SHRs. The treatment also enhanced α diversity in gut microbiota of the SHRs and resulted in a decreased Firmicutes/Bacteroidota ratio, more active Muribaculaceae growth, and suppression of Clostridia_UCG-014 proliferation.
CONCLUSIONS
Early life intervention with B. bifidum BD-1 alleviates hyperactivity in female SHRs by modulating the gut microbiota and peripheral immune response, suppressing neuroinflammation and improving dopaminergic system function. These findings provide evidence for early prevention strategies and support the development and application of psychobiotics for ADHD.
Animals
;
Female
;
Rats
;
Rats, Inbred WKY
;
Rats, Inbred SHR
;
Attention Deficit Disorder with Hyperactivity/therapy*
;
Bifidobacterium bifidum
;
Probiotics/therapeutic use*
;
Dopamine Plasma Membrane Transport Proteins/metabolism*
;
Tyrosine 3-Monooxygenase/metabolism*
;
Gastrointestinal Microbiome
;
Disease Models, Animal
9.Electroacupuncture improves post-traumatic stress disorder in rats by alleviating hippocampal mitochondrial injury via regulating Bcl-2/Bax/caspase-3 signaling.
Dandan MA ; Jie CHENG ; Hong ZHANG ; Guang LIU ; Kai SONG
Journal of Southern Medical University 2025;45(11):2375-2384
OBJECTIVES:
To investigate the mechanism underlying the therapeutic effect of electroacupuncture (EA) on post-traumatic stress disorder (PTSD) in rats.
METHODS:
Forty male SD rats were randomized equally into blank control group, PTSD model group, sham-acupuncture group, paroxetine group, and EA group. In the latter 3 groups, the rat models of PTSD, induced by continuous single-prolonged stress and plantar electrical stimulation, were treated with EA at GV20, GV24, BL18 and BL23 acupoints for 15 min (5 times a week for 3 weeks), sham-acupuncture without electrical stimulation, or gavage with paroxetine suspension on the same schedule. Behavioral changes of the rats were evaluated using open field test (OFT) and elevated plus maze (EPM) test. Hippocampal pathologies and neuronal changes were examined with HE and Nissl staining, and mitochondrial ultrastructure was examined using electron microscopy. The mRNA and protein expression levels of Bcl-2, Bax, and caspase-3 were detected by RT-qPCR and immunofluorescence staining.
RESULTS:
The rat models of PTSD showed significantly reduced total distance traveled in OFT and distance and time spent in the open arms of the EPM, with decreased hippocampal neurons, obvious neuronal and mitochondrial pathologies, decreased hippocampal expression of Bcl-2, and increased Bax and caspase-3 expressions. Treatments with paroxetine and EA both significantly improved behavioral changes of the rat models, increased the number of Nissl-stained neurons, obviously alleviated pathologies in the hippocampal neurons and mitochondrial ultrastructure, increased hippocampal Bcl-2 expression, and lowered caspase-3 expressions. Paroxetine showed significantly better effect than EA for improving performance of the rats in EPM test, whereas sham-acupuncture did not produce any significant improvement.
CONCLUSIONS
EA alleviates PTSD in rats possibly by upregulating Bcl-2 and downregulating Bax and caspase-3, thereby ameliorating hippocampal mitochondrial damage.
Animals
;
Electroacupuncture
;
Stress Disorders, Post-Traumatic/metabolism*
;
Hippocampus/pathology*
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
Mitochondria/pathology*
;
Signal Transduction
;
bcl-2-Associated X Protein/metabolism*
;
Caspase 3/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Disease Models, Animal
10.From Correlation to Causation: Understanding Episodic Memory Networks.
Ahsan KHAN ; Jing LIU ; Maité CRESPO-GARCÍA ; Kai YUAN ; Cheng-Peng HU ; Ziyin REN ; Chun-Hang Eden TI ; Desmond J OATHES ; Raymond Kai-Yu TONG
Neuroscience Bulletin 2025;41(8):1463-1486
Episodic memory, our ability to recall past experiences, is supported by structures in the medial temporal lobe (MTL) particularly the hippocampus, and its interactions with fronto-parietal brain regions. Understanding how these brain regions coordinate to encode, consolidate, and retrieve episodic memories remains a fundamental question in cognitive neuroscience. Non-invasive brain stimulation (NIBS) methods, especially transcranial magnetic stimulation (TMS), have advanced episodic memory research beyond traditional lesion studies and neuroimaging by enabling causal investigations through targeted magnetic stimulation to specific brain regions. This review begins by delineating the evolving understanding of episodic memory from both psychological and neurobiological perspectives and discusses the brain networks supporting episodic memory processes. Then, we review studies that employed TMS to modulate episodic memory, with the aim of identifying potential cortical regions that could be used as stimulation sites to modulate episodic memory networks. We conclude with the implications and prospects of using NIBS to understand episodic memory mechanisms.
Humans
;
Memory, Episodic
;
Transcranial Magnetic Stimulation/methods*
;
Brain/physiology*
;
Nerve Net/physiology*
;
Mental Recall/physiology*
;
Neural Pathways/physiology*

Result Analysis
Print
Save
E-mail