1.Discussion on Theory of "Gaozhuo" and Syndrome Differentiation and Treatment for Microcirculatory Disorders in Diabetic Retinopathy
Kai WU ; Yunfeng YU ; Xiangning HUANG ; Qianhong LIU ; Fangfang LI ; Rong YU ; Xiaolei YAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):245-252
Retinal microcirculatory disorder is a key factor in the occurrence and development of diabetic retinopathy (DR), and also an important link in the prevention and treatment of DR. The theory of "Gaozhuo" holds that the microcirculatory disorder in DR is based on the deficiency of spleen Qi and is characterized by the obstruction caused by "Gaozhuo" and blood stasis. The deficiency of spleen Qi is an essential precondition for the endogenous formation and accumulation of Gaozhuo, while Gaozhuo invasion is the direct cause of microcirculatory disorders in DR. The deficiency of spleen Qi and the endogenous formation of Gaozhuo mean the process in which glucose metabolism dysfunction induces an excessive production of inflammatory factors and lipid metabolites. The obstruction caused by "Gaozhuo" and blood stasis is the direct pathogenesis of microcirculatory disorders in DR, encompassing two stages: Gaozhuo obstruction and turbidity and stasis stagnation. Gaozhuo obstruction and turbidity and stasis stagnation represent the process in which inflammatory factors and lipid metabolites damage the retinal microcirculation and induce thrombosis, thus mediating microcirculatory disorders. Turbidity and stasis stagnation and blood extravasation outside the vessels reveal the progression to microvascular rupture and hemorrhage resulting from the microcirculatory disorders. According to the pathogenesis evolution of the theory of "Gaozhuo", microcirculatory disorders in DR can be divided into deficiency of spleen Qi with Gaozhuo obstruction, deficiency of spleen Qi with turbidity and stasis stagnation, and turbidity and stasis stagnation with blood extravasation outside the vessels. Clinically, treatment principles should focus on strengthening the spleen and benefiting Qi, resolving turbidity, and dispersing stasis. Different syndrome patterns should be addressed with tailored therapies, such as enhancing the spleen and benefiting Qi while regulating Qi and reducing turbidity, strengthening the spleen and benefiting Qi while resolving turbidity and dispelling stasis, and strengthening the spleen and resolving turbidity while removing stasis and stopping bleeding. Representative prescriptions include modified Wendantang, modified Buyang Huanwutang, modified Danggui Buxuetang, Zhuixue Mingmu decoction, Tangmuqing, Shengqing Jiangzhuo Tongluo Mingmu prescription, Danhong Huayu decoction, and Yiqi Yangyin Huoxue Lishui formula.
2.Isoliquiritigenin alleviates abnormal endoplasmic reticulum stress induced by type 2 diabetes mellitus
Kai-yi LAI ; Wen-wen DING ; Jia-yu ZHANG ; Xiao-xue YANG ; Wen-bo GAO ; Yao XIAO ; Ying LIU
Acta Pharmaceutica Sinica 2025;60(1):130-140
Isoliquiritigenin (ISL) is a chalcone compound isolated from licorice, known for its anti-diabetic, anti-cancer, and antioxidant properties. Our previous study has demonstrated that ISL effectively lowers blood glucose levels in type 2 diabetes mellitus (T2DM) mice and improves disturbances in glucolipid and energy metabolism induced by T2DM. This study aims to further investigate the effects of ISL on alleviating abnormal endoplasmic reticulum stress (ERS) caused by T2DM and to elucidate its molecular mechanisms.
3.Geographical Inference Study of Dust Samples From Four Cities in China Based on ITS2 Sequencing
Wen-Jun ZHANG ; Yao-Sen FENG ; Jia-Jin PENG ; Kai FENG ; Ye DENG ; Ke-Lai KANG ; Le WANG
Progress in Biochemistry and Biophysics 2025;52(4):970-981
ObjectiveIn the realm of forensic science, dust is a valuable type of trace evidence with immense potential for intricate investigations. With the development of DNA sequencing technologies, there is a heightened interest among researchers in unraveling the complex tapestry of microbial communities found within dust samples. Furthermore, striking disparities in the microbial community composition have been noted among dust samples from diverse geographical regions, heralding new possibilities for geographical inference based on microbial DNA analysis. The pivotal role of microbial community data from dust in geographical inference is significant, underscoring its critical importance within the field of forensic science. This study aims to delve deeply into the nuances of fungal community composition across the urban landscapes of Beijing, Fuzhou, Kunming, and Urumqi in China. It evaluates the accuracy of biogeographic inference facilitated by the internal transcribed spacer 2 (ITS2) fungal sequencing while concurrently laying a robust foundation for the operational integration of environmental DNA into geographical inference mechanisms. MethodsITS2 region of the fungal genomes was amplified using universal primers known as 5.8S-Fun/ITS4-Fun, and the resulting DNA fragments were sequenced on the Illumina MiSeq FGx platform. Non-metric multidimensional scaling analysis (NMDS) was employed to visually represent the differences between samples, while analysis of similarities (ANOSIM) and permutational multivariate analysis of variance (PERMANOVA) were utilized to statistically evaluate the dissimilarities in community composition across samples. Furthermore, using Linear Discriminant Analysis Effect Size (LEfSe) analysis to identify and filter out species that exhibit significant differences between various cities. In addition, we leveraged SourceTracker to predict the geographic origins of the dust samples. ResultsAmong the four cities of Beijing, Fuzhou, Kunming and Urumqi, Beijing has the highest species richness. The results of species annotation showed that there were significant differences in the species composition and relative abundance of fungal communities in the four cities. NMDS analysis revealed distinct clustering patterns of samples based on their biogeographic origins in multidimensional space. Samples from the same city exhibited clear clustering, while samples from different cities showed separation along the first axis. The results from ANOSIM and PERMANOVA confirmed the significant differences in fungal community composition between the four cities, with the most pronounced distinctions observed between Fuzhou and Urumqi. Notably, the biogeographic origins of all known dust samples were successfully predicted. ConclusionSignificant differences are observed in the fungal species composition and relative abundance among the cities of Beijing, Fuzhou, Kunming, and Urumqi. Employing fungal ITS2 sequencing on dust samples from these urban areas enables accurate inference of biogeographical locations. The high feasibility of utilizing fungal community data in dust for biogeographical inferences holds particular promise in the field of forensic science.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Research on a COPD Diagnosis Method Based on Electrical Impedance Tomography Imaging
Fang LI ; Bai CHEN ; Yang WU ; Kai LIU ; Tong ZHOU ; Jia-Feng YAO
Progress in Biochemistry and Biophysics 2025;52(7):1866-1877
ObjectiveThis paper proposes a novel real-time bedside pulmonary ventilation monitoring method for the diagnosis of chronic obstructive pulmonary disease (COPD), based on electrical impedance tomography (EIT). Four indicators—center of ventilation (CoV), global inhomogeneity index (GI), regional ventilation delay inhomogeneity (RVDI), and the ratio of forced expiratory volume in one second to forced vital capacity (FEV1/FVC)—are calculated to enable the spatiotemporal assessment of COPD. MethodsA simulation of the respiratory cycles of COPD patients was first conducted, revealing significant differences in certain indicators compared to healthy individuals. The effectiveness of these indicators was then validated through experiments. A total of 93 subjects underwent multiple pulmonary function tests (PFTs) alongside simultaneous EIT measurements. Ventilation heterogeneity under different breathing patterns—including forced exhalation, forced inhalation, and quiet tidal breathing—was compared. EIT images and related indicators were analyzed to distinguish healthy individuals across different age groups from COPD patients. ResultsSimulation results demonstrated significant differences in CoV, GI, FEV1/FVC, and RVDI between COPD patients and healthy individuals. Experimental findings indicated that, in terms of spatial heterogeneity, the GI values of COPD patients were significantly higher than those of the other two groups, while no significant differences were observed among healthy individuals. Regarding temporal heterogeneity, COPD patients exhibited significantly higher RVDI values than the other groups during both quiet breathing and forced inhalation. Moreover, during forced exhalation, the distribution of FEV1/FVC values further highlighted the temporal delay heterogeneity of regional lung function in COPD patients, distinguishing them from healthy individuals of various ages. ConclusionEIT technology effectively reveals the spatiotemporal heterogeneity of regional lung function, which holds great promise for the diagnosis and management of COPD.
7.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
9.Post-exposure prophylaxis and follow-up in children and young persons presenting with sexual assault.
Sarah Hui Wen YAO ; Karen NADUA ; Chia Yin CHONG ; Koh Cheng THOON ; Chee Fu YUNG ; Natalie Woon Hui TAN ; Kai-Qian KAM ; Peter WONG ; Juliet TAN ; Jiahui LI
Annals of the Academy of Medicine, Singapore 2025;54(7):410-418
INTRODUCTION:
Paediatric sexual assault (SA) victims should be assessed for post-exposure prophylaxis (PEP) to mitigate the risk of sexually transmitted infections (STIs). We describe the clinical characteristics of children and young persons (CYPs) presenting with SA at KK Women's and Children's Hospital in Singapore, viral PEP (human immunodeficiency virus [HIV] and hepatitis B virus [HBV]) prescribing practices, and STI evaluation at follow-up.
METHOD:
Medical records of CYPs ≤16 years who presented with SA between January 2022 and August 2023 were reviewed, including assault and assailant characteristics, baseline and follow-up STI screening, PEP prescription, adherence and follow-up attendance. CYPs with SA in the preceding 72 hours by HIV-positive or HIV-status unknown assailants with high-risk characteris-tics were eligible for HIV PEP.
RESULTS:
We analysed 278 CYPs who made 292 SA visits. There were 40 (13.7%) CYPs eligible for HIV PEP, of whom 29 (82.9%) received it. Among those tested at baseline, 9% and 34.9% of CYPs tested positive for Chlamydia trachomatis and Gardnerella vaginalis, respectively. None tested positive for Neisseria gonorrhoeae, Trichomonas vaginalis, HIV, HBV or hepatitis C. Majority of CYPs tested were HBV non-immune (n=167, 67.6%); only 77 (46.1%) received the vaccine. Out of 27 CYPs eligible for HBV PEP with immunoglobulin, only 21 (77.7%) received immunoglobulin. A total of 37 CYPs received HIV PEP, including 8 who were retrospectively deemed ineligible. Only 10 (27%) completed the course. Overall, 153 (57.7%) CYPs attended follow-up, and none seroconverted for HIV or HBV.
CONCLUSION
We report suboptimal rates of HBV post-exposure vaccination, and low compliance to HIV PEP and follow-up among paediatric SA victims. Factors contri-buting to poor compliance should be examined to optimise care for this vulnerable population.
Humans
;
Post-Exposure Prophylaxis/methods*
;
Female
;
Child
;
Adolescent
;
Singapore/epidemiology*
;
HIV Infections/prevention & control*
;
Male
;
Sexually Transmitted Diseases/epidemiology*
;
Retrospective Studies
;
Hepatitis B/prevention & control*
;
Follow-Up Studies
;
Child, Preschool
;
Sex Offenses/statistics & numerical data*
;
Child Abuse, Sexual

Result Analysis
Print
Save
E-mail