1.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
2.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
3.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
4.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
5.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
6.Analysis of clinical characteristics and influencing factors of patients with postmenopausal osteoporosis combined with dyslipidemia.
Rong XIE ; Li-Guo ZHU ; Zi-Kai JIN ; Tian-Xiao FENG ; Ke ZHAO ; Da WANG ; Ling-Hui LI ; Xu WEI
China Journal of Orthopaedics and Traumatology 2025;38(5):487-493
OBJECTIVE:
To explore the co-morbid influencing factors of postmenopausal osteoporosis(PMOP) and dyslipidemia, and to provide evidence-based basis for clinical co-morbidity management.
METHODS:
Based on the 2017 to 2018 Beijing community cross-sectional survey data, PMOP patients were included and divided into the dyslipidemia group and the uncomplicated dyslipidemia group according to whether they were comorbid with dyslipidemia. Demographic characteristics, living habits and disease history were collected through questionnaires, and bone mineral density and bone metabolism biomarkers (osteocalcin, blood calcium, serum typeⅠprocollagen N-terminal prepeptide, etc.) were detected on site. Co-morbidity risk factors were analyzed using binary logistic regression.
RESULTS:
Three hundred and twenty patients with PMOP were included, including the comorbid group (75 patients) and the uncomplicated group (245 patients). The results showed that history of cardiovascular disease [OR=1.801, 95%CI(1.003, 3.236), P=0.049], history of cerebrovascular disease [OR=2.923, 95%CI(1.460, 5.854), P=0.002], frying and cooking methods[OR=5.388, 95%CI(1.632, 17.793), P=0.006], OST results[OR=0.910, 95%CI(0.843, 0.983), P=0.016], and blood Ca results [OR=60.249, 95%CI(1.862, 1 949.926), P=0.021] were the influencing factors of PMOP complicated with dyslipidemia.
CONCLUSION
Focus should be placed on the influencing factors of PMOP and dyslipidemia co-morbidities, with emphasis on multidimensional assessment, combining lifestyle interventions with bone metabolism marker monitoring to optimize co-morbidity management.
Humans
;
Dyslipidemias/epidemiology*
;
Female
;
Middle Aged
;
Osteoporosis, Postmenopausal/metabolism*
;
Aged
;
Cross-Sectional Studies
;
Risk Factors
;
Bone Density
8.Platelet methyltransferase-like protein 4-mediated mitochondrial DNA metabolic disorder exacerbates oral mucosal immunopathology in hypoxia.
Yina ZHU ; Meichen WAN ; Yutong FU ; Junting GU ; Zhaoyang REN ; Yun WANG ; Kehui XU ; Jing LI ; Manjiang XIE ; Kai JIAO ; Franklin TAY ; Lina NIU
International Journal of Oral Science 2025;17(1):49-49
Hypoxemia is a common pathological state characterized by low oxygen saturation in the blood. This condition compromises mucosal barrier integrity particularly in the gut and oral cavity. However, the mechanisms underlying this association remain unclear. This study used periodontitis as a model to investigate the role of platelet activation in oral mucosal immunopathology under hypoxic conditions. Hypoxia upregulated methyltransferase-like protein 4 (METTL4) expression in platelets, resulting in N6-methyladenine modification of mitochondrial DNA (mtDNA). This modification impaired mitochondrial transcriptional factor A-dependent cytosolic mtDNA degradation, leading to cytosolic mtDNA accumulation. Excess cytosolic mt-DNA aberrantly activated the cGAS-STING pathway in platelets. This resulted in excessive platelet activation and neutrophil extracellular trap formation that ultimately exacerbated periodontitis. Targeting platelet METTL4 and its downstream pathways offers a potential strategy for managing oral mucosa immunopathology. Further research is needed to examine its broader implications for mucosal inflammation under hypoxic conditions.
DNA, Mitochondrial/metabolism*
;
Mouth Mucosa/pathology*
;
Hypoxia/immunology*
;
Methyltransferases/metabolism*
;
Blood Platelets/metabolism*
;
Animals
;
Periodontitis/immunology*
;
Humans
;
Platelet Activation
;
Mice
9.Establishment of a high-throughput sequencing platform for the whole genome of Chikungunya virus based on a multiplex-PCR method
Wenzhe SU ; Yan LI ; Weizhi LU ; Huaping XIE ; Kuibiao LI ; Biao DI ; Kai NIE ; Huanyu WANG ; Zhoubin ZHANG ; Songtao XU
Chinese Journal of Preventive Medicine 2024;58(4):489-496
Objective:To establish a rapid pipeline for whole genome sequencing of Chikungunya virus (CHIKV) by combining imbricated multiplex-PCR amplification and Illumina high-throughput sequencing platform.Methods:The primary reference sequences of CHIKV were downloaded from the National Center for Biotechnology Information (NCBI) database, covering all genotypes of CHIKV. After multiple alignments using the Mafft software and phylogenetic analysis, the 20 CHIKV references were selected for primer design. The Primal Scheme tool and Geneious Prime software were used to design, evaluate and optimize the primer panel. Finally, seven CHIKV-positive samples were involved in the validation of the primer panel.Results:All the amplicons of the designed panel were generated successfully. The consensuses generated from the mapping results could cover 100.00% of the coding region of the CHIKV genome when the Ct-value of the sample was less than 33, as the percentage would decrease to 99.38% when the Ct-value reached 35. The mapping percentage could be increased by 5.70%-25.43% when using the stepwise correction mapping strategy.Conclusion:The multiplex-PCR amplification method for CHIKV whole genome sequencing is relatively simple and convenient, which only requires two tubes of PCR amplification and performs well on CHIKV-positive clinical samples with different concentration levels of virus.
10.The preliminary application of cinematic rendering reconstruction technology in acute aortic dissection
He ZHANG ; Zhongxiao LIU ; Meng YU ; Miao YU ; Ziyou WANG ; Wenbei XU ; Xiaonan SUN ; Shenman QIU ; Lixiang XIE ; Yanchun ZHANG ; Yankai MENG ; Cunjie SUN ; Kai XU
Journal of Practical Radiology 2024;40(10):1620-1624
Objective To analyze the clinical application value of cinematic rendering(CR)reconstruction technology in acute aortic dissection(AAD),and to compare the imaging quality between CR and volume rendering(VR)reconstruction.Methods Patients with suspected A AD who underwent aortic computed tomography angiography(CTA)were analyzed retrospectively.All images were uploaded to Siemens Syngo.via post-processing workstation for VR and CR three-dimensional reconstruction,respectively.The optimized view angle,staining and transparency were selected and segmented by a radiologist to display the lesion to the full extent.All subjective evaluations of post-processing images were randomly evaluated on Siemens Syngo.via post-processing workstation by two radiologists.The two radiologists reached a consensus after consultation,and the results without consensus were evaluated by another senior radiologist.The 3-point scale was used in the subjective evaluation of post-processing images.The scores of rupture,endometrium,and true and false cavity were recorded.The diagnostic confidence was also recorded.Results A total of 21 ADD patients were enrolled,11 patients(52.3%)were Debakey Ⅲ type.The scores of rupture in CR and VR reconstruction were 2.952 points and 2.619 points,respectively,which had significant difference(P=0.016).For the endometrium of AAD,the score of all 21 patients in the CR reconstruction was 3 points,while only 7 patients(33.3%)in the VR reconstruction had 3 points,which showed significant difference between the both(P<0.001).For the true and false cavity of AAD,only 1 patient(4.8%)in the VR reconstruction was 3 points,while all 21 patients in the CR reconstruction had 3 points(P<0.001).The scores of CR reconstruction on the diagnostic confidence were significantly higher than those of VR reconstruction(P<0.001).Conclusion CR reconstruction can provide photorealistic anatomical post-processing images,and can improve the display and evaluation of AAD.

Result Analysis
Print
Save
E-mail