1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Regulatory effect of electroacupuncture at "Neiguan" (PC6) on mitochondrial autophagy during the ischemia and reperfusion phases in rats with myocardial ischemia-reperfusion injury.
Qirui YANG ; Xinghua QIU ; Xingye DAI ; Daonan LIU ; Baichuan ZHAO ; Wenyi JIANG ; Yanhua SONG ; Tong PU ; Kai CHENG
Chinese Acupuncture & Moxibustion 2025;45(5):646-656
OBJECTIVE:
To investigate the regulatory effect of electroacupuncture (EA) at "Neiguan" (PC6) on mitochondrial autophagy in rats with myocardial ischemia-reperfusion injury (MIRI) at different phases (ischemia and reperfusion phases), and to explore the bidirectional regulatory effects of EA at "Neiguan" (PC6) and its potential mechanism.
METHODS:
Forty-five male SD rats were randomly divided into 6 groups according to the random number table method, namely, sham-operation group (n=9), model-A group (n=6), model-B group (n=9), EA-A1 group (n=6), EA-B1 group (n=6), and EA-B2 group (n=9). Except the rats in the sham-operation group, the MIRI model was established in the other groups with the physical ligation and tube pushing method. In the model-A group, the samples were collected directly after ligation, and in the model-B group, the samples were collected after ligation and reperfusion. In the EA-A1 group, EA was delivered while the ligation was performed, and afterwards, the samples were collected. In the EA-B1 group, while the ligation was performed, EA was operated at the same time, and after reperfusion, the samples were collected. In the EA-B2 group, during ligation and the opening of the left anterior descending branch of the coronary artery, EA was delivered, and after reperfusion, the samples were collected. EA was performed at bilateral "Neiguan" (PC6), with a disperse-dense wave, a frequency of 2 Hz/100 Hz, a current of 1 mA, and a duration of 30 min. HE staining was employed to observe the morphology of cardiomyocytes, TUNEL was adopted to detect the apoptosis of cardiomyocytes, transcriptome sequencing was to detect the differentially expressed genes in the left ventricle, JC-1 flow cytometry was to detect the mitochondrial membrane potential (MMP) of cardiomyocytes, Western blot was to detect the protein expression of phosphatase and tensin homolog-induced kinase 1 (Pink1), Parkin and p62 in the left ventricle of rats, and ELISA was to detect the levels of serum creatine kinase isoenzyme (CK-MB) and cardiac troponin I (cTn-I) in the rats.
RESULTS:
Compared with the sham-operation group, the cardiomyocytes of rats in the model-B group were severely damaged, with disordered arrangement, unclear boundaries, broken muscle fibers, edema and loose distribution; and the cardiomyocytes in the EA-B2 group were slightly damaged, the cell structure was partially unclear, the cells were arranged more regularly, and the intact cardiomyocytes were visible. Compared with the sham-operation group, the apoptosis of cardiomyocytes increased in the model-B group (P<0.001); and when compared with the model-B group, the apoptosis alleviated in the EA-B2 group (P<0.001). The differentially expressed genes among the EA-B2 group, the sham-operation group and the model-B group were closely related to cell autophagy and mitochondrial autophagy. Compared with the sham-operation group, MMP of cardiomyocytes was reduced (P<0.001), the protein expression of Pink1, Parkin, and p62 of the left ventricle and the levels of serum CK-MB and cTn-I were elevated in the model B group (P<0.001). In comparison with model-A group, the MMP of cardiomyocytes and the levels of serum CK-MB and cTn-I were reduced (P<0.001, P<0.05), and the protein expression of Pink1 in the left ventricle rose in the EA-A1 group (P<0.01). Compared with the model-B group, MMP of cardiomyocytes increased (P<0.001), the protein expression of Pink1, Parkin, and p62 of the left ventricle, and the levels of serum CK-MB and cTn-I decreased (P<0.001) in the EA-B1 group and the EA-B2 group. When compared with the EA-A1 group, MMP of cardiomyocytes increased (P<0.001), and the protein expression of Pink1, Parkin, and p62 of the left ventricle, and the levels of serum CK-MB and cTn-I decreased in the EA-B1 group (P<0.01).
CONCLUSION
EA at "Neiguan" (PC6) can ameliorate MIRI in rats, which may be achieved through the Pink1/Parkin-mediated mitochondrial autophagy pathway. EA can alleviate myocardial injury by enhancing mitochondrial autophagy at the ischemia phase, and it can reduce reperfusion injury by weakening mitochondrial autophagy at the reperfusion phase.
Animals
;
Electroacupuncture
;
Male
;
Myocardial Reperfusion Injury/metabolism*
;
Rats, Sprague-Dawley
;
Rats
;
Acupuncture Points
;
Autophagy
;
Humans
;
Mitochondria/genetics*
7.Efficacy of a short-penis therapeutic apparatus on penile dysplasia in children and prediction of the penile dysplasia index.
Wan-Ting PU ; Yi-Na MA ; Turdi NAFISA ; Kai-Fang LIU ; Jia LI
National Journal of Andrology 2025;31(1):34-38
OBJECTIVE:
To investigate the therapeutic effect of the short-penis treatment apparatus and wide-band infrared therapy apparatus on penile dysplasia (PDP) in children and establish objective parameters for assessing the severity of PDP.
METHODS:
This study included 252 children received in the Department of pediatric urology of the First Affiliated Hospital of Xinjiang Medical University from January to December 2023, 102 with PDP (the PDP group) and the other 150 with normal penile development (the control group), those of the former group treated with the short-penis therapeutic apparatus and wide-band infrared therapy apparatus. Before and after 30 days of treatment, we measured the flaccid penile length (FPL), stretched penile length (SPL) and penile diameters (PD) of the children, and defined the penile dysplasia index as the FPL/SPL and FPL/PD ratios.
RESULTS:
The penile parameters exhibited statistically significant differences between the PDP and control groups, (FPL:[1.97±0.72]cm vs [3.25±0.51] cm, P<0.01; SPL:[3.80±0.81]cm vs [5.21±0.79]cm,P<0.01).The FPL remarkably increased in the PDP group after treatment([1.97±0.72]cm vs [2.90±1.20] cm, P<0.01). Both FPL and SPL were notably shorter in the PDP cases than in the controls, with the cutoff values of 0.57 and 2.09, sensitivities of 80.7% and 95.3%, and specificities of 69.6% and 82.4% for FPL/SPL and FPL/PD, respectively.
CONCLUSION
The short-penis therapeutic apparatus and wide-band infrared therapy apparatus can promote the growth and development of the penis in children. The ratio of FPL/PD can serve as an objective indicator to effectively describe the severity of penile developmental abnormalities.
Humans
;
Male
;
Penis/abnormalities*
;
Child
;
Penile Diseases/therapy*
;
Child, Preschool
;
Infant
8.Physical intervention combined with medical nutritional weight loss for the treatment of short penis in obese children.
Yi-Na MA ; Wan-Ting PU ; Turdi NAFISA ; Kai-Fang LIU ; Jia LI
National Journal of Andrology 2025;31(4):300-305
OBJECTIVE:
To investigate the clinical effect of physical intervention combined with medical nutritional weight loss (PI+MNWL) in the treatment of short penis in obese children.
METHODS:
One hundred and twenty obese children with a short penis were included and equally divided into three groups: PI+MNWL, MNWL, and self-guided diet, who underwent PI+MNWL, MNWL intervention under the supervision of professional nutritionists in the hospital, or self-guided diet intervention at home, respectively, all for 30 days. We measured the penile parameters, including stretched penile length (SPL), flaccid penile length (FPL) and penile diameter (PD), of the children before and after treatment, and compared them among the three groups.
RESULTS:
After intervention, the body weight of the children was significantly decreased in all the three groups (27.1-94.1[53.59±11.88] kg vs 23.0-85.1[49.01±11.61] kg, P < 0.05). The weight of children in 3 groups decreased to different degrees, and the difference was statistically significant (P < 0.05). MNWL was found remarkably more effective than self-guided weight loss in reducing the body weight of the children (P < 0.05). Based on weight loss achieved through medical nutrition combined with physical intervention, the FPL in the PI+MNWL group increased from (1.93 ± 0.76) cm before treatment to (3.41 ± 1.41) cm after one course of comprehensive treatment, with a statistically significant difference (P < 0.05). Similarly, SPL increased from (3.75 ± 0.76) cm before treatment to (4.98 ± 0.64) cm, and PD increased from (1.32 ± 0.21) cm before treatment to (1.61 ± 0.66) cm, both showing statistically significant differences (P < 0.05). In the MNWL group , FPL increased from (2.01 ± 0.81) cm to (2.77 ± 0.84) cm after one course of treatment, with a statistically significant difference (P < 0.05). Additionally, SPL increased from (4.03 ± 0.84) cm before treatment to (4.40 ± 0.76) cm, also demonstrating statistical significance (P < 0.05), while PD increased from (1.37 ± 0.21) cm before treatment to (1.42 ± 0.22) cm, with statistical significance (P < 0.05). FPL and SPL increased significantly in the PI+MNWL group compared to the MNWL group (P < 0.05, P < 0.01). However, there was no significant difference in PD between the two groups following the intervention (P > 0.05).
CONCLUSION
MNWL is more effective than self-guided diet in controlling the body weight of children, while the combination approach of PI+MNWL is even superior to the management of short penis in obese children, with the advantages of improving the appearance and increasing the exposed length of the penis.
Humans
;
Male
;
Child
;
Weight Loss
;
Penis/abnormalities*
;
Obesity/complications*
;
Adolescent
9.Clinical effect of superficial temporal artery-middle cerebral artery anastomosis in the treatment of occlusive cerebrovascular disease
Zeng-Bin FU ; Li-Peng QIN ; Yao LI ; Pu-Yang LI ; Kai WANG ; Ya-Peng ZHAO ; Xue-Liang GAO
Journal of Regional Anatomy and Operative Surgery 2024;33(1):80-84
Objective To investigate the clinical effect of superficial temporal artery-middle cerebral artery anastomosis(STA-MCA)in the treatment of patients with occlusive cerebrovascular disease.Methods A total of 74 patients with occlusive cerebrovascular disease admitted to our hospital were included and divided into the observation group and control group according to the random number table method,with 37 cases in each group.Patients in the control group received conservative treatment,and patients in the observation group received STA-MCA.After 3 months of follow-up,the cerebral blood flow indexes(including cerebral blood flow of anterior cerebral artery,and peak time)before treatment and 3rd day,1st month and 3rd month after treatment were observed,the modified Rankin scores before treatment and 3rd day and 1 month after treatment were recorded,and the revascularization and occurrence of complications after treatment were recorded.Results At 1 month and 3 months after treatment,the cerebral blood flow of anterior cerebral artery in the two groups increased and the peak time was shortened,and the cerebral blood flow of anterior cerebral artery in the observation group was higher than that in the control group,and the peak time was shorter than that in the control group,with statistically significant differences(P<0.05).The modified Rankin scores of the two groups 1 month after treatment were lower compared with those before treatment,and the modified Rankin score of the observation group was lower than that of the control group,with statistically significant differences(P<0.05).At 1 month after treatment,the proportions of patients with grades 0 and 1 of vascular reconstruction in the observation group were lower than those in the control group,and the proportions of patients with grades 2 and 3 were higher than those in the control group,with statistical significant differences(P<0.05).At 3 months after treatment,the proportions of patients with grades 0 and 1 of vascular reconstruction in the observation group were lower than those in the control group,and the proportion of patients with grade 3 of vascular reconstruction was higher than that in the control group,with statistically significant differences(P<0.05).There was no statistically significant difference in the total incidence of complications after treatment between the two groups(P>0.05).Conclusion STA-MCA has a good clinical effect in the treatment of patients with occlusive cerebrovascular disease,which is conducive to improving the cerebral blood flow indexes and promoting the recovery of neurological function and vascular reconstruction,with safety and reliability.
10.Chlorogenic acid ameliorates heart failure by attenuating cardiomyocyte ferroptosis
Kai Huang ; Fanghe Li ; Jiayang Tang ; Haiyin Pu ; Vasily Sukhotukov ; Alexander N Orekhov ; Shuzhen Guo
Journal of Traditional Chinese Medical Sciences 2024;11(2):191-198
Objective:
To elucidate the effects of chlorogenic acid (CGA), a bioactive polyphenol compound prevalent in traditional Chinese medicine and various foods, including Lonicera japonica Thunb. (Jin Yin Hua), Eucommia ulmoides Oliv. (Du Zhong Ye), tea, and coffee, on cardiomyocyte ferroptosis and heart failure.
Methods:
We assessed the effect of CGA on cardiac function using a mouse model of heart failure induced by transverse aortic constriction (TAC). These indicators included the left ventricular ejection fraction (LVEF), fractional shortening (LVFS), end-systolic volume (LVESV), end-diastolic volume (LVEDV), end-systolic diameter (LVESD), and end-diastolic diameter (LVEDD). An isoprenaline hydrochloride (ISO)-induced H9c2 cardiomyocyte cell model was also established, and the cells were treated with various concentrations of CGA. To assess the effect of CGA on ferroptosis in cardiomyocytes, we measured cell viability and evaluated the levels of intracellular reactive oxygen species (ROS), ferrous ions (Fe2+), and lipid peroxidation using fluorescent staining. To clarify the ferroptosis signaling pathway regulated by CGA, western blotting was used to examine the expression of ferroptosis biomarkers, specifically solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), in H9c2 cardiomyocytes and mouse myocardial tissues.
Results:
CGA significantly enhanced cardiac performance indices such as LVEF, LVFS, LVESV, LVEDV, LVESD, and LVEDD. H9c2 cardiomyocytes exposed to ISO showed decreased cell viability and increased ROS levels, Fe2+ content, and lipid peroxidation levels. However, CGA treatment significantly ameliorated these changes. Additionally, in both H9c2 cardiomyocytes and myocardial tissue obtained from mice with TAC, CGA increased the expression of ferroptosis-related proteins, including SLC7A11 and GPX4.
Conclusion
CGA has the potential to enhance cardiac function and diminish lipid peroxidation and ROS levels in cardiomyocytes via the SLC7A11/GPX4 signaling pathway. This process alleviates ferroptosis in cardiomyocytes. These results provide new insights into the clinical use of CGA and the management of heart failure.


Result Analysis
Print
Save
E-mail