1.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
2.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
3.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
4.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
5.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
6.Efficacy of alpha-lipoic acid in patients with ischemic heart failure: a randomized, double-blind, placebo-controlled study
Hanchuan CHEN ; Qin YU ; Yamei XU ; Chen LIU ; Jing SUN ; Jingjing ZHAO ; Wenjia LI ; Kai HU ; Junbo GE ; Aijun SUN
Chinese Journal of Clinical Medicine 2025;32(4):717-719
Objective To explore the safety and effects of alpha-lipoic acid (ALA) in patients with ischemic heart failure (IHF). Methods A randomized, double-blind, placebo-controlled trial was designed (ClinicalTrial.gov registration number NCT03491969). From January 2019 to January 2023, 300 patients with IHF were enrolled in four medical centers in China, and were randomly assigned at a 1∶1 ratio to receive ALA (600 mg daily) or placebo on top of standard care for 24 months. The primary outcome was the composite outcome of hospitalization for heart failure (HF) or all-cause mortality events. The second outcome included non-fatal myocardial infarction (MI), non-fatal stroke, changes of left ventricular ejection fraction (LVEF) and 6-minute walking distance (6MWD) from baseline to 24 months after randomization. Results Finally, 138 patients of the ALA group and 139 patients of the placebo group attained the primary outcome. Hospitalization for HF or all-cause mortality events occurred in 32 patients (23.2%) of the ALA group and in 40 patients (28.8%) of the placebo group (HR=0.753, 95%CI 0.473-1.198, P=0.231; Figure 1A-1C). The absolute risk reduction (ARR) was 5.6%, the relative risk reduction (RRR) associated with ALA therapy was approximately 19.4% compared to placebo, corresponding to a number needed to treat (NNT) of 18 patients to prevent one event. In the secondary outcome analysis, the composite outcome of the major adverse cardiovascular events (MACE) including the hospitalization for HF, all-cause mortality events, non-fatal MI or non-fatal stroke occurred in 35 patients (25.4%) in the ALA group and 47 patients (33.8%) in the placebo group (HR=0.685, 95%CI 0.442-1.062, P=0.091; Figure 1D). Moreover, greater improvement in LVEF (β=3.20, 95%CI 1.14-5.23, P=0.002) and 6MWD (β=31.7, 95%CI 8.3-54.7, P=0.008) from baseline to 24 months after randomization were observed in the ALA group as compared to the placebo group. There were no differences in adverse events between the study groups. Conclusions These results show potential long-term beneficial effects of adding ALA to IHF patients. ALA could significantly improve LVEF and 6MWD compared to the placebo group in IHF patients.
7.Coronary artery stenosis associated with right ventricular dysfunction in acute pulmonary embolism: A case-control study.
Yuejiao MA ; Jieling MA ; Dan LU ; Yinjian YANG ; Chao LIU ; Liting WANG ; Xijie ZHU ; Xianmei LI ; Chunyan CHENG ; Sijin ZHANG ; Jiayong QIU ; Jinghui LI ; Mengyi LIU ; Kai SUN ; Xin JIANG ; Xiqi XU ; Zhi-Cheng JING
Chinese Medical Journal 2025;138(16):2028-2036
BACKGROUND:
The potential impact of pre-existing coronary artery stenosis (CAS) on right ventricular (RV) function during acute pulmonary embolism (PE) episodes remains underexplored. This study aimed to investigate the association between pre-existing CAS and RV dysfunction in patients with acute PE.
METHODS:
In this multicenter, case-control study, 89 cases and 176 controls matched for age were enrolled at three study centers (Peking Union Medical College Hospital, Fuwai Hospital, and the Second Affiliated Hospital of Harbin Medical University) from January 2016 to December 2020. The cases were patients with acute PE with CAS, and the controls were patients with acute PE without CAS. Coronary artery assessment was performed using coronary computed tomographic angiography. CAS was defined as ≥50% stenosis of the lumen diameter in any coronary vessel >2.0 mm in diameter. Conditional logistic regression analysis was used to evaluate the association between CAS and RV dysfunction.
RESULTS:
The percentages of RV dysfunction (19.1% [17/89] vs. 44.6% [78/176], P <0.001) and elevated systolic pulmonary artery pressure (sPAP) (19.3% [17/89] vs. 39.5% [68/176], P = 0.001) were significantly lower in the case group than those in the control group. In the multivariable logistic regression model, CAS was independently and negatively associated with RV dysfunction (adjusted odds ratio [OR]: 0.367; 95% confidence interval [CI]: 0.185-0.728; P = 0.004), and elevated sPAP (OR: 0.490; 95% CI: 0.252-0.980; P = 0.035), respectively.
CONCLUSIONS
Pre-existing CAS was significantly and negatively associated with RV dysfunction and elevated sPAP in patients with acute PE. This finding provides new insights into RV dysfunction in patients with acute PE with pre-existing CAS.
Humans
;
Pulmonary Embolism/complications*
;
Case-Control Studies
;
Male
;
Ventricular Dysfunction, Right/physiopathology*
;
Female
;
Middle Aged
;
Aged
;
Coronary Stenosis/complications*
;
Logistic Models
;
Adult
8.Era value and new directions of traditional Chinese medicine in preventing and treating osteoporosis from perspective of "bone health program".
Yi-Li ZHANG ; Chuan-Rui SUN ; Kai SUN ; Ai-Li XU ; Hao SHEN ; He YIN ; Ling-Hui LI ; Li-Guo ZHU ; Xu WEI
China Journal of Chinese Materia Medica 2025;50(3):569-574
Facing the requirements of promoting the healthy China initiative and improving people's health, the "bone health program" was proposed in 2024. In-depth development of a traditional Chinese medicine(TCM) prevention and control system is of strategic significance to the implementation of the "bone health program". Focusing on osteoporosis(OP), a representative disease affecting people's bone health, this paper concludes that accelerating the research on the prevention and control of OP by TCM is conducive to enhancing the knowledge and awareness of OP among the public, and it is beneficial to revealing the evolutionary pattern of OP and improving the understanding and management of this disease. Additionally, it can provide an overall framework for and strengthen the systematicity and completeness of the research on the prevention and treatment of OP by TCM. Meanwhile, it can help to explore new research paradigms and optimize the existing research model, so as to promote innovative breakthroughs in the prevention and treatment of bone health-related diseases by TCM. Under the overall layout of the "bone health program", importance should be attached to the early prevention and the innovation of very early diagnosis and intervention of OP. Emphasis should be put on the discovery of the target network of disease and treatment mechanism for revealing the core pathogenesis of OP and the therapeutic mechanism of TCM. In addition to local lesions of the bone and its clinical outcomes, attention should be paid to the development of multiple metabolic complications. The fusion of advanced interdisciplinary technologies should be promoted for OP and its complications, and thus a research and development system based on clinical application scenarios and driven by big data can be built. The measures above will facilitate the progress in the prevention and treatment of OP and other bone diseases by TCM and provide new momentum for enriching and deepening the research connotation of the "bone health program".
Osteoporosis/therapy*
;
Humans
;
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal/therapeutic use*
;
China
;
Bone and Bones/drug effects*
9.Effect of medicinal parts and harvest seasons on nature-flavor correlation of plant-based Chinese materia medica.
Qi-Ao MA ; Guang YANG ; Hong-Chao WANG ; Ying LI ; Meng CHENG ; Tie-Lin WANG ; Kai SUN ; Xiu-Lian CHI
China Journal of Chinese Materia Medica 2025;50(15):4228-4237
This study selected 6 529 plant-based Chinese materia medica(PCMM) from Chinese Materia Medica as research subjects and applied a random permutation test to explore the overall correlation characteristics between nature and flavor, as well as the correlation characteristics after distinguishing different medicinal parts and harvest seasons. The results showed that the overall correlation characteristics between nature and flavor in PCMM were significantly associated in the following pairs: cold and bitter, cool and bitter, cool and astringent, cool and light, neutral and sweet, neutral and astringent, neutral and light, neutral and sour, hot and pungent, and warm and pungent. When analyzing the data by distinguishing medicinal parts and/or harvest seasons, new correlation patterns emerged, characterized by the disappearance of some significant correlations and the emergence of new ones. When analyzing by medicinal parts alone, significant correlations were found in the following cases: cold and light in leaves, cold and salty in barks, cool and sweet in fruits and seeds, neutral and pungent in whole herbs, neutral and salty in stems, and warm and salty in flowers. However, no significant correlations were found between cool and bitter in stems and other types of herbs, cool and astringent in fruits, seeds, flowers, and other types of herbs, cool and light in leaves, fruits, seeds, barks, flowers and other types of herbs, neutral and sweet in barks, neutral and astringent in whole herbs and stems, neutral and light in leaves, fruits, seeds, and flowers, neutral and sour in whole herbs, stems, barks, flowers, and other types of herbs, and hot and pungent in whole herbs, stems, flowers, and other types of herbs. When analyzing by harvest season alone, significant correlations were found in the following cases: cold and salty, and cool and sour in herbs harvested in winter, and neutral and salty in herbs harvested year-round. However, no significant correlation was found between cool and light in herbs harvested in winter. When considering both medicinal parts and harvest seasons, compared to the independent influence of medicinal parts, 14 new significant correlations emerged(e.g., the correlation between cool and bitter in stems harvested in spring), while 53 previously significant correlations disappeared(e.g., the correlation between cool and bitter in barks harvested in summer). Compared to the independent influence of harvest seasons, 11 new significant correlations appeared(e.g., the correlation between cold and light in barks harvested in autumn), while 50 previously significant correlations disappeared(e.g., the correlation between hot and pungent in leaves harvested in winter). This study is the first to reveal the influence of medicinal parts and harvest seasons on the correlation between nature and flavor in PCMM, which highlights that these two factors can interact and jointly affect nature-flavor correlations. Further research is needed to explore the underlying mechanisms. This study provides a deeper understanding of the inherent scientific connotations of herbal properties and offers a theoretical foundation for the cultivation and harvesting of PCMM.
Seasons
;
Plants, Medicinal/growth & development*
;
Drugs, Chinese Herbal/chemistry*
;
Taste

Result Analysis
Print
Save
E-mail