1.Determining the mechanism of Shuxuening injection against liver cirrhosis through network pharmacology and animal experiments
Qiyao Liu ; Tingyu Zhang ; Yongan Ye ; Xin Sun ; Huan Xia ; Xu Cao ; Xiaoke Li ; Wenying Qi ; Yue Chen ; Xiaobin Zao
Journal of Traditional Chinese Medical Sciences 2025;2025(1):112-124
Objective:
To screen and identify the key active molecules, signaling pathways, and therapeutic targets of Shuxuening (SXN) injection for treating liver cirrhosis (LC) and to evaluate its therapeutic potential using a mouse model.
Methods:
Target genes of SXN and LC were retrieved from public databases, and enrichment analysis was performed. A protein–protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), and hub genes were identified using Molecular Complex Detection (MCODE). LC was induced in rats and mice via intraperitoneal injections of diethylnitrosamine and carbon tetrachloride (CCl4) for 12 weeks. Starting at week 7, SXN was administered intraperitoneally to the mice in the treatment group. Serum and liver tissues of the mice were collected for the detection of indicators, pathological staining, and expression analysis of hub targets using quantitative real-time polymerase chain reaction (qRT-PCR).
Results:
We identified 368 overlapping genes (OLGs) between SXN and LC targets. These OLGs were subsequently used to build a PPI network and to screen for hub genes. Enrichment analysis showed that these genes were associated with cancer-related pathways, including phosphoinositide-3-kinase/Akt and mitogen-activated protein kinase signaling and various cellular processes, such as responses to chemicals and metabolic regulation. In vivo experiments demonstrated that SXN treatment significantly improved liver function and pathology in CCl4-induced LC mice by reducing inflammation and collagen deposition. Furthermore, qRT-PCR demonstrated that SXN regulated the expression of MAPK8, AR and CASP3 in the livers of LC mice.
Conclusion
This study highlighted the therapeutic effects of SXN in alleviating LC using both bioinformatics and experimental methods. The observed effect was associated with modulation of hub gene expression, particularly MAPK8, and CASP3.
2.Pathogenesis of Refractory Rheumatoid Arthritis with Healthy Qi Deficiency and Toxins Accumulation
Wei LIU ; Yuxiu KA ; Shujuan CHEN
Journal of Traditional Chinese Medicine 2024;65(22):2368-2372
Refractory rheumatoid arthritis belongs to the category of "stubborn bi (痹)" and "lame bi" in traditional Chinese medicine. It is believed that pathogenic toxin is an important pathogenic factor of refractory rheumatoid arthritis, and "healthy qi deficiency and toxins accumulation" is its core pathogenesis. Pathogenic toxin can be divided into latent and internal toxin, among which latent toxin includes congenital latent toxin and acquired exogenous and drug-induced latent toxin; and internal toxin is directly produced by the dysfunction of the body's zang-fu (脏腑) organs, or is transformed from dampness, turbidity, phlegm and stasis. Pathogenic toxin can flow into the meridians and collaterals, quickly corrode the bones and joints, harm the five zang organs, secretly consume the body's healthy qi, and accumulate and entrench. Based on this, the treatment principle of "reinforcing healthy qi and resolving toxins" has been established, emphasizing that the key is to strengthen the origin of the body's healthy qi and to attack the pathogenic toxin from its weakness. In clinical practice, it is suggested to trace the root cause, and treat the disease based on the cause. Besides reinforcing the body's healthy qi, the methods such as clearing heat to resolve toxins, draining dampness to resolve toxins, dispelling wind to remove toxins, dispersing cold to resolve toxins, dissolving phlegm to resolve toxins, and dispersing stasis to resolve toxins can be supplemented, so as to reinforce the healthy qi and dispel pathogens simultaneously and thereby improving the clinical efficacy.
3.Establishment and application of measurement range of main blood quality indicators in provincial blood stations
Zixuan ZHANG ; Ying CHANG ; Xiaotong ZHANG ; Qingming WANG ; Yuan ZHANG ; Yue LIU ; Qinghua TIAN ; Ka LI ; Guorong LI ; Lixia CHEN ; Junhua SUN ; Yu KANG ; Pingchen HAN ; Xinyu ZHAO ; Song LI
Chinese Journal of Blood Transfusion 2024;37(8):918-926
Objective To obtain the monitoring measurement range of quality indicators of red blood cells,plasma and derivatives and leukocyte-reduced apheresis platelets provided by blood stations in Hebei province,explore the distribution of monitoring values and the change of monitoring level,so as to further strengthen the homogenization construction of quality control laboratories in blood stations in Hebei.Methods In 2023,the sampling data of 12 blood stations in Hebei from 2015 to 2022 were collected,scatter plots were made and the range markers were set,and the"mean±SD"line was taken as the upper limit and lower limit of the measurement range.In 2024,the monitoring values in 2023 were added,and the changes of two measurement ranges were compared to analyze the stability and overall level.Results Comparison of the measurement range from 2015 to 2022 and the measurement range from 2015 to 2023 showed that the standard deviation of the content of deleukocyte suspension of red blood cells-hemoglobin,washed erythrocyte-hemoglobin,washed erythrocyte-su-pernatant protein,cryoprecipitate coagulation factor-FⅧ,fresh frozen plasma-FⅧ,leukocyte-reduced apheresis platelets-leukocyte residue and leukocyte-reduced apheresis platelet-red blood cell concentration decreased from 8.132 to 7.993,6.252 to 6.104,0.273 to 0.267,57.506 to 56.276,0.920 to 0.892,0.653 to 0.644 and 2.653 to 2.603,respectively.The narrowing of the standard deviation range of the above items led to more concentrated monitoring values and reduced disper-sion.Comparison of the measurement range from 2015 to 2022 and the measurement range from 2015 to 2023 showed that the mean value of leukocyte residue of the deleukocyte suspension of red blood cells,hemoglobin content of the wash eryth-rocyte,protein content of supernatant of the wash erythrocyte,hemolysis rate of the wash erythrocyte,FⅧ content of the cryoprecipitate coagulation factor,plasma protein content of the fresh frozen plasma,FⅧ content of the fresh frozen plasma,platelet content of the leukocyte-reduced apheresis platelets changed from 0.362 to 0.476,44.915 to 44.861,0.280 to 0.283,0.137 to 0.142,133.989 to 133.271,60.262 to 60.208,1.301 to 1.277 and 3.036 to 3.033,respectively,and was closer to the national standard line,which reflects an increase in the number of unqualified monitoring values or values close to the national standard line in 2023.The long-term qualified rate of coagulation items was low,and no improvement has been ob-served.The stability of biochemical items has been enhanced but overall deviation has occurred,with the average value close to the national standard line.The possibility of subsequent testing failure has increased.The counting items showed no obvi-ous common characteristics.Conclusion The use of"mean±SD"in the analysis can visually display the distribution of mo-nitoring values of different items in Hebei,forming an indicator measurement range covering the past nine years.It shows the characteristics of each item,and provides reference for subsequent quality control laboratory data analysis of each blood sta-tions to takes active measures to improve the monitoring level.
4.A novel deep learning based cloud service system for automated acupuncture needle counting: a strategy to improve acupuncture safety
WONG Tsz Ho ; WEI Junyi ; CHEN Haiyong ; NG Bacon Fung Leung
Digital Chinese Medicine 2024;7(1):40-46
Objective :
The unintentional retention of needles in patients can lead to severe consequences. To enhance acupuncture safety, the study aimed to develop a deep learning-based cloud system for automated process of counting acupuncture needles.
Methods:
This project adopted transfer learning from a pre-trained Oriented Region-based Convolutional Neural Network (Oriented R-CNN) model to develop a detection algorithm that can automatically count the number of acupuncture needles in a camera picture. A training set with 590 pictures and a validation set with 1 025 pictures were accumulated for finetuning. Then, we deployed the MMRotate toolbox in a Google Colab environment with a NVIDIA Tesla T4 Graphics processing unit (GPU) to carry out the training task. Furthermore, we integrated the model with a newly-developed Telegram bot interface to determine the accuracy, precision, and recall of the needling counting system. The end-to-end inference timewas also recorded to determine the speed of our cloud service system.
Result:
In a 20-needle scenario, our Oriented R-CNN detection model has achieved an accuracy of 96.49%, precision of 99.98%, and recall of 99.84%, with an average end-to-end inference time of 1.535 s.
Conclusion
The speed, accuracy, and reliability advancements of this cloud service system innovation have demonstrated its potential of using object detection technique to improve acupuncture practice based on deep learning.
5.Glycyrrhizic acid-based multifunctional nanoplatform for tumor microenvironment regulation.
Meng XIAO ; Zhiqing GUO ; Yating YANG ; Chuan HU ; Qian CHENG ; Chen ZHANG ; Yihan WU ; Yanfen CHENG ; Wui Lau Man BENSON ; Sheung Mei Ng SHAMAY ; George Pak-Heng LEUNG ; Jingjing LI ; Huile GAO ; Jinming ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2024;22(12):1089-1099
Natural compounds demonstrate unique therapeutic advantages for cancer treatment, primarily through direct tumor suppression or interference with the tumor microenvironment (TME). Glycyrrhizic acid (GL), a bioactive ingredient derived from the medicinal herb Glycyrrhiza uralensis Fisch., and its sapogenin glycyrrhetinic acid (GA), have been recognized for their ability to inhibit angiogenesis and remodel the TME. Consequently, the combination of GL with other therapeutic agents offers superior therapeutic benefits. Given GL's amphiphilic structure, self-assembly capability, and liver cancer targeting capacity, various GL-based nanoscale drug delivery systems have been developed. These GL-based nanosystems exhibit angiogenesis suppression and TME regulation properties, synergistically enhancing anti-cancer effects. This review summarizes recent advances in GL-based nanosystems, including polymer-drug micelles, drug-drug assembly nanoparticles (NPs), liposomes, and nanogels, for cancer treatment and tumor postoperative care, providing new insights into the anti-cancer potential of natural compounds. Additionally, the review discusses existing challenges and future perspectives for translating GL-based nanosystems from bench to bedside.
Animals
;
Humans
;
Antineoplastic Agents/therapeutic use*
;
Glycyrrhizic Acid/therapeutic use*
;
Liposomes/chemistry*
;
Micelles
;
Nanoparticles/chemistry*
;
Neoplasms/pathology*
;
Tumor Microenvironment/drug effects*
;
Nanoparticle Drug Delivery System/therapeutic use*
6.A hnRNPA2B1 agonist effectively inhibits HBV and SARS-CoV-2 omicron in vivo.
Daming ZUO ; Yu CHEN ; Jian-Piao CAI ; Hao-Yang YUAN ; Jun-Qi WU ; Yue YIN ; Jing-Wen XIE ; Jing-Min LIN ; Jia LUO ; Yang FENG ; Long-Jiao GE ; Jia ZHOU ; Ronald J QUINN ; San-Jun ZHAO ; Xing TONG ; Dong-Yan JIN ; Shuofeng YUAN ; Shao-Xing DAI ; Min XU
Protein & Cell 2023;14(1):37-50
The twenty-first century has already recorded more than ten major epidemics or pandemics of viral disease, including the devastating COVID-19. Novel effective antivirals with broad-spectrum coverage are urgently needed. Herein, we reported a novel broad-spectrum antiviral compound PAC5. Oral administration of PAC5 eliminated HBV cccDNA and reduced the large antigen load in distinct mouse models of HBV infection. Strikingly, oral administration of PAC5 in a hamster model of SARS-CoV-2 omicron (BA.1) infection significantly decreases viral loads and attenuates lung inflammation. Mechanistically, PAC5 binds to a pocket near Asp49 in the RNA recognition motif of hnRNPA2B1. PAC5-bound hnRNPA2B1 is extensively activated and translocated to the cytoplasm where it initiates the TBK1-IRF3 pathway, leading to the production of type I IFNs with antiviral activity. Our results indicate that PAC5 is a novel small-molecule agonist of hnRNPA2B1, which may have a role in dealing with emerging infectious diseases now and in the future.
Animals
;
Mice
;
Antiviral Agents/pharmacology*
;
COVID-19
;
Hepatitis B virus
;
Interferon Type I/metabolism*
;
SARS-CoV-2/drug effects*
;
Heterogeneous-Nuclear Ribonucleoprotein Group A-B/antagonists & inhibitors*
7.Effect of patient decision aids on choice between sugammadex and neostigmine in surgeries under general anesthesia: a multicenter randomized controlled trial
Li-Kai WANG ; Yao-Tsung LIN ; Jui-Tai CHEN ; Winnie LAN ; Kuo-Chuan HUNG ; Jen-Yin CHEN ; Kuei-Jung LIU ; Yu-Chun YEN ; Yun-Yun CHOU ; Yih-Giun CHERNG ; Ka-Wai TAM
Korean Journal of Anesthesiology 2023;76(4):280-289
Background:
Shared decision making using patient decision aids (PtDAs) was established over a decade ago, but few studies have evaluated its efficacy in Asian countries. We therefore evaluated the application of PtDAs in a decision conflict between two muscle relaxant reversal agents, neostigmine and sugammadex, and sequentially analyzed the regional differences and operating room turnover rates.
Methods:
This multicenter, outcome-assessor-blind, randomized controlled trial included 3,132 surgical patients from two medical centers admitted between March 2020 and August 2020. The patients were randomly divided into the classical and PtDA groups for pre-anesthesia consultations. Their clinicodemographic characteristics were analyzed to identify variables influencing the choice of reversal agent. On the day of the pre-anesthesia consultation, the patients completed the four SURE scale (sure of myself, understand information, risk-benefit ratio, encouragement) screening items. The operating turnover rates were also evaluated using anesthesia records.
Results:
Compared with the classical group, the PtDA group felt more confident about receiving sufficient medical information (P < 0.001), felt better informed about the advantages and disadvantages of the medications (P < 0.001), exhibited a superior understanding of the benefits and risks of their options (P < 0.001), and felt surer about their choice (P < 0.001). Moreover, the PtDA group had a significantly greater tendency to choose sugammadex over neostigmine (P < 0.001).
Conclusions
PtDA interventions in pre-anesthesia consultations provided surgical patients with clear knowledge and better support. PtDAs should be made available in other medical fields to enhance shared clinical decision-making.
8.Promotion effect of TGF-β-Zfp423-ApoD pathway on lip sensory recovery after nerve sacrifice caused by nerve collateral compensation.
Pingchuan MA ; Gaowei ZHANG ; Su CHEN ; Cheng MIAO ; Yubin CAO ; Meng WANG ; Wenwen LIU ; Jiefei SHEN ; Patrick Ming-Kuen TANG ; Yi MEN ; Li YE ; Chunjie LI
International Journal of Oral Science 2023;15(1):23-23
Resection of oral and maxillofacial tumors is often accompanied by the inferior alveolar nerve neurectomy, resulting in abnormal sensation in lower lip. It is generally believed that spontaneous sensory recovery in this nerve injury is difficult. However, during our follow-up, patients with inferior alveolar nerve sacrifice showed different degrees of lower lip sensory recovery. In this study, a prospective cohort study was conducted to demonstrate this phenomenon and analyze the factors influencing sensory recovery. A mental nerve transection model of Thy1-YFP mice and tissue clearing technique were used to explore possible mechanisms in this process. Gene silencing and overexpression experiments were then conducted to detect the changes in cell morphology and molecular markers. In our follow-up, 75% of patients with unilateral inferior alveolar nerve neurectomy had complete sensory recovery of the lower lip 12 months postoperatively. Patients with younger age, malignant tumors, and preservation of ipsilateral buccal and lingual nerves had a shorter recovery time. The buccal nerve collateral sprouting compensation was observed in the lower lip tissue of Thy1-YFP mice. ApoD was demonstrated to be involved in axon growth and peripheral nerve sensory recovery in the animal model. TGF-β inhibited the expression of STAT3 and the transcription of ApoD in Schwann cells through Zfp423. Overall, after sacrificing the inferior alveolar nerve, the collateral compensation of the ipsilateral buccal nerve could innervate the sensation. And this process was regulated by TGF-β-Zfp423-ApoD pathway.
Mice
;
Animals
;
Lip/innervation*
;
Prospective Studies
;
Mandibular Nerve/pathology*
;
Sensation/physiology*
;
Trigeminal Nerve Injuries/pathology*
9.The chemical reprogramming of unipotent adult germ cells towards authentic pluripotency and de novo establishment of imprinting.
Yuhan CHEN ; Jiansen LU ; Yanwen XU ; Yaping HUANG ; Dazhuang WANG ; Peiling LIANG ; Shaofang REN ; Xuesong HU ; Yewen QIN ; Wei KE ; Ralf JAUCH ; Andrew Paul HUTCHINS ; Mei WANG ; Fuchou TANG ; Xiao-Yang ZHAO
Protein & Cell 2023;14(7):477-496
Although somatic cells can be reprogrammed to pluripotent stem cells (PSCs) with pure chemicals, authentic pluripotency of chemically induced pluripotent stem cells (CiPSCs) has never been achieved through tetraploid complementation assay. Spontaneous reprogramming of spermatogonial stem cells (SSCs) was another non-transgenic way to obtain PSCs, but this process lacks mechanistic explanation. Here, we reconstructed the trajectory of mouse SSC reprogramming and developed a five-chemical combination, boosting the reprogramming efficiency by nearly 80- to 100-folds. More importantly, chemical induced germline-derived PSCs (5C-gPSCs), but not gPSCs and chemical induced pluripotent stem cells, had authentic pluripotency, as determined by tetraploid complementation. Mechanistically, SSCs traversed through an inverted pathway of in vivo germ cell development, exhibiting the expression signatures and DNA methylation dynamics from spermatogonia to primordial germ cells and further to epiblasts. Besides, SSC-specific imprinting control regions switched from biallelic methylated states to monoallelic methylated states by imprinting demethylation and then re-methylation on one of the two alleles in 5C-gPSCs, which was apparently distinct with the imprinting reprogramming in vivo as DNA methylation simultaneously occurred on both alleles. Our work sheds light on the unique regulatory network underpinning SSC reprogramming, providing insights to understand generic mechanisms for cell-fate decision and epigenetic-related disorders in regenerative medicine.
Male
;
Mice
;
Animals
;
Cellular Reprogramming/genetics*
;
Tetraploidy
;
Pluripotent Stem Cells/metabolism*
;
Induced Pluripotent Stem Cells/metabolism*
;
DNA Methylation
;
Spermatogonia/metabolism*
;
Germ Cells/metabolism*
10.Deciphering suppressive effects of Lianhua Qingwen Capsule on COVID-19 and synergistic effects of its major botanical drug pairs.
Yuanyuan CHEN ; Cheng ZHANG ; Ning WANG ; Yibin FENG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(5):383-400
The COVID-19 pandemic has resulted in excess deaths worldwide. Conventional antiviral medicines have been used to relieve the symptoms, with limited therapeutic effect. In contrast, Lianhua Qingwen Capsule is reported to exert remarkable anti-COVID-19 effect. The current review aims to: 1) uncover the main pharmacological actions of Lianhua Qingwen Capsule for managing COVID-19; 2) verify the bioactive ingredients and pharmacological actions of Lianhua Qingwen Capsule by network analysis; 3) investigate the compatibility effect of major botanical drug pairs in Lianhua Qingwen Capsule; and 4) clarify the clinical evidence and safety of the combined therapy of Lianhua Qingwen Capsule and conventional drugs. Numerous bioactive ingredients in Lianhu Qingwen, such as quercetin, naringenin, β-sitosterol, luteolin, and stigmasterol, were identified to target host cytokines, and to regulate the immune defence in response to COVID-19. Genes including androgen receptor (AR), myeloperoxidase (MPO), epidermal growth factor receptor (EGFR), insulin (INS), and aryl hydrocarbon receptor (AHR) were found to be significantly involved in the pharmacological actions of Lianhua Qingwen Capsule against COVID-19. Four botanical drug pairs in Lianhua Qingwen Capsule were shown to have synergistic effect for the treatment of COVID-19. Clinical studies demonstrated the medicinal effect of the combined use of Lianhua Qingwen Capsule and conventional drugs against COVID-19. In conclusion, the four main pharmacological mechanisms of Lianhua Qingwen Capsule for managing COVID-19 are revealed. Therapeutic effect has been noted against COVID-19 in Lianhua Qingwen Capsule.
Humans
;
COVID-19
;
Pandemics
;
Drugs, Chinese Herbal/therapeutic use*
;
Antiviral Agents/therapeutic use*
;
COVID-19 Drug Treatment


Result Analysis
Print
Save
E-mail