1.Colon-specific controlled release of oral liposomes for enhanced chemo-immunotherapy against colorectal cancer.
Mengya NIU ; Yihan PEI ; Tiantian JIN ; Junxiu LI ; Liming BAI ; Cuixia ZHENG ; Qingling SONG ; Hongjuan ZHAO ; Yun ZHANG ; Lei WANG
Acta Pharmaceutica Sinica B 2024;14(11):4977-4993
A colon-specific drug delivery system has great potential for the oral administration of colorectal cancer. However, the uncontrollable in vivo fate of liposomes makes their effectiveness for colonic location, and intratumoral accumulation remains unsatisfactory. Here, an oral colon-specific drug delivery system (CBS-CS@Lipo/Oxp/MTZ) was constructed by covalently conjugating Clostridium butyricum spores (CBS) with drugs loaded chitosan (CS)-coated liposomes, where the model chemotherapy drug oxaliplatin (Oxp) and anti-anaerobic bacteria agent metronidazole (MTZ) were loaded. Following oral administration, CBS germinated into Clostridium butyricum (CB) and colonized in the colon. Combined with colonic specifically β-glucosidase responsive degrading of CS, dual colon-specific release of liposomes was achieved. And the accumulation of liposomes at the CRC site furtherly increased by 2.68-fold. Simultaneously, the released liposomes penetrated deep tumor tissue via the permeation enhancement effect of CS to kill localized intratumoral bacteria. Collaborating with blocking the translocation of intestinal pathogenic bacteria from lumen to tumor with the gut microbiota modulation of CB, the intratumoral pathogenic bacteria were eliminated fundamentally, blocking their recruitment to immunosuppressive cells. Furtherly, synchronized with lipopolysaccharide (LPS) released from MTZ-induced dead Fusobacterium nucleatum and the tumor-associated antigens produced by Oxp-caused immunogenic dead cells, they jointly enhanced tumor infiltration of CD8+ T cells and reactivated robust antitumor immunity.
2.Imbalance in the spinal serotonergic pathway induces aggravation of mechanical allodynia and microglial activation in carrageenan inflammation
Junxiu JIN ; Dong Ho KANG ; Jin JEON ; Hyung Gon LEE ; Woong Mo KIM ; Myung Ha YOON ; Jeong Il CHOI
The Korean Journal of Pain 2023;36(1):51-59
Background:
This study investigated the effect of an excess and a deficit of spinal 5-hydroxytryptamine (5-HT) on the mechanical allodynia and neuroglia activation in a rodent pain model of carrageenan inflammation.
Methods:
Male Sprague–Dawley rats were implanted with an intrathecal (i.t.) catheter to administer the drug. To induce an excess or deficit of 5-HT in the spinal cord, animals were given either three i.t. 5-HT injections at 24-hour intervals or a single i.t. injection of 5,7-dihydroxytryptamine (5,7-DHT) before carrageenan inflammation.Mechanical allodynia was measured using the von Frey test for 0–4 hours (early phase) and 24–28 hours (late phase) after carrageenan injection. The changes in the activation of microglia and astrocyte were examined using immunofluorescence of the dorsal horn of the lumbar spinal cord.
Results:
Both an excess and a deficit of spinal 5-HT had no or a minimal effect on the intensity of mechanical allodynia during the early phase but prevented the attenuation of mechanical allodynia during the late phase, which was observed in animals not treated with i.t. 5-HT or 5,7-DHT. Animals with an excess or deficit of 5-HT showed stronger activation of microglia, but not astrocyte, during the early and late phases, than did normal animals.
Conclusions
Imbalance in the descending 5-HT pathway in the spinal cord could aggravate the mechanical allodynia and enhance the activation of microglia, suggesting that the spinal 5-HT pathway plays an essential role in maintaining the nociceptive processing in balance between facilitation and inhibition in inflammatory pain caused by carrageenan inflammation.

Result Analysis
Print
Save
E-mail