1.Efficacy and Mechanism of Action of Ermiao Situ Decoction in Modulating JAK/STAT Pathway in Rats with Damp-heat Eczema
Kangning HAN ; Junjie HU ; Juan LI ; Min ZHANG ; Xian ZHOU ; Songlin LIU ; Xin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):37-47
ObjectiveUltra performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) coupled with network pharmacology and molecular docking was utilized to explore the efficacy and mechanism of action of Ermiao Situ decoction on rats with damp-heat eczema. MethodsA rat model of damp-heat eczema was established by artificial climate chamber intervention combined with sensitization induction by dinitrochlorobenzene (DNCB), and it was randomly divided into the normal group, the model group, the medium- and high-dose groups of Ermiao Situ decoction (3.40 g·kg-1 and 6.80 g·kg-1), and the prednisone acetate group (2.51 mg·kg-1), with eight rats in each group, totalling 46 rats, of which six rats were tested with the drug-containing serum. The chemical analysis of drug-containing serum from rats was carried out by UPLC-Q-TOF-MS/MS, combined with network pharmacology for the prediction of key components, core targets, and signaling pathways, and molecular docking experiments were performed by CB-Dock2 online website. The pharmacological effects of Ermiao Situ decoction in the treatment of damp-heat eczema were investigated by epitaxial indexes combined with the pathologic tissue staining method. The serum levels of gastrin (GAS), interleukin-4 (IL-4), and interleukin-13 (IL-13) were measured by enzyme-linked immunosorbent assay (ELISA). Interleukin-6 (IL-6), Janus kinase 1 (JAK1), phosphorylated (p)-JAK1, signal transduction and activation of transcription factor 3 (STAT3), and p-STAT3 protein expression level was determined by Western bolt. ResultsA total of 19 active ingredients were detected in drug-containing serum samples of rats, which were predicted to act on 198 targets for the treatment of damp-heat eczema, among which the key ingredients included rhodopsin, huangpai alkaloids, and quercetin, and the main core targets included STAT3, tumor necrosis factor (TNF), and IL-6, which were mainly involved in the cancer signaling pathway, phosphatidylinositol 3-kinase (PI3K)/protein kinase (Akt) signaling pathway, T helper 17 (Th17) cell differentiation signaling pathway, and JAK/STAT signaling pathway. The molecular docking results suggested that the key components had strong binding activities with the core targets IL-6, JAK1, and STAT3 in the JAK/STAT signaling pathway. The results of animal experiments showed that compared with those in the normal group, rats in the model group were depressed. They had loose hair, loose stools, epidermal oozing, vesiculation, and generation of thick scabs in the form of scales, decreased body weight, increased anus temperature and water intake, and increased indexes of the spleen, thymus gland, and stomach (P<0.05, P<0.01), and the lesion tissue could be seen to be hyperkeratotic, with the aggregation of inflammatory cells and nonsignificant separation of epidermis and dermis. The gastric mucosa was thinned, deficient, and structurally disorganized, and obvious inflammatory cell aggregation was seen. The levels of GAS, IL-4, and IL-13 in serum were significantly reduced (P<0.05, P<0.01), and the protein expression levels of IL-6, JAK1, p-JAK1, and p-STAT3 in the lesion tissue were significantly increased (P<0.05, P<0.01). Compared with those in the model group, rats in each administration group had stable mental states, formed feces, a clean perianal area, and basically normal epidermis. Only a small amount of scaly scabs existed, and the rats had body weight increased, with decreased anal temperature and water intake, as well as decreased spleen, thymus, and gastric indexes (P<0.05, P<0.01). Epidermal thickness was decreased, and epidermal and dermal separation boundaries were obvious, but hyperkeratotic and accumulation of inflammatory cells could still be seen. The thickness of gastric mucosa increased, and the structure was restored to varying degrees. The levels of GAS, IL-4, and IL-13 content in the serum of rats were increased to varying degrees, and the protein expression levels of IL-6, JAK1, p-JAK1, and p-STAT3 in the dermal lesion tissue were significantly decreased (P<0.05, P<0.01). ConclusionErmiao Situ decoction may exert therapeutic effects on rats with damp-heat eczema by modulating the JAK/STAT signaling pathway.
2.Exploration of the antidepressant machanism of Shugan hewei tang based on metabolomics of PFC-NAc-VTA neural circuit
Xinyue QU ; Junjie HU ; Juan LI ; Min ZHANG ; Xian ZHOU ; Songlin LIU ; Xin CHEN
China Pharmacy 2025;36(10):1172-1178
OBJECTIVE To investigate the antidepressant mechanism of Shugan hewei tang (SGHWT) based on the metabolomics of prefrontal cortex (PFC)-nucleus accumbens (NAc)-ventral tegmental area (VTA) neural circuit. METHODS Male SD rats were randomly divided into blank group, model group, SGHWT low-, medium- and high-dose groups [3.67, 7.34, 14.68 g/(kg·d), by raw material], and fluoxetine group [1.58 mg/(kg·d), positive control], with 12 rats in each group. Except for the blank group, the depression model was established by chronic unpredictable mild stress combined with individual cage housing in the remaining groups, and the corresponding drug solution or normal saline was administered via gavage during modeling, once a day, for 6 consecutive weeks. After the last administration, the body weight, sucrose preference rate, total moving distance, frequency into the center and immobility time of rats in each group were detected. Samples of PFC, NAc and VTA areas of rats in the blank group, model group, SGHWT medium-dose group and fluoxetine positive control groups were collected,and their histomorphological features were observed, and non-targeted metabolomics analysis (except for fluoxetine group)were performed and validated. RESULTS Compared with model group, the cytolysis, structural damage and other pathological damages in three brain regions of rats were significantly alleviated in each drug group, while their body weight, sucrose preference rate, total moving distance and frequency into the center were all significantly higher or longer (P<0.05), and immobility time was significantly shorter (P<0.05). The results of non-targeted metabolomics showed that a total of 78 endogenous differential metabolites were identified, with 40, 35 and 24 in the PFC, NAc and VTA regions respectively, mainly involved in amino acid, lipid and sphingolipid metabolism. The results of metabolic pathway enrichment analysis showed that SGHWT affected the neural circuits of depressed rats by regulating sphingolipid metabolism, alanine, aspartic acid and glutamic acid metabolism, saturated fatty acid biosynthesis, among which alanine, aspartic acid and glutamic acid metabolism was predominantly involved. Validation experiments showed that SGHWT significantly increased the phosphorylation levels of protein kinase B (Akt) and mammalian target of rapamycin (mTOR), and decreased the protein expression of N-methyl-D-aspartic acid receptor 1 (NMDAR1) in the NAc region of rats. CONCLUSIONS SGHWT significantly improves the depression-like behavior and attenuates pathological damage of PFC-NAc-VTA neural circuit of model rats, the mechanism of which is associated with inhibiting NMDAR1 expression and activating the Akt/mTOR signaling pathway.
3.Effect of Complanatoside A on the apoptosis of articular chondrocytes
Lu YIN ; Chuanfeng JIANG ; Junjie CHEN ; Ming YI ; Zihe WANG ; Houyin SHI ; Guoyou WANG ; Huarui SHEN
Chinese Journal of Tissue Engineering Research 2025;29(8):1541-1547
BACKGROUND:Chondrocyte apoptosis is an important factor in the development of osteoarthritis,and Complanatoside A has a flavonoid effect,which can inhibit apoptosis of various cells,but its effect on chondrocyte apoptosis and the mechanism of action are not clear. OBJECTIVE:To investigate the intrinsic association and mechanism of Complanatoside A in chondrocyte apoptosis based on the Wnt/β-catenin signaling pathway. METHODS:(1)The cartilage tissues of the femur and tibia transected during knee arthroplasty were collected,and chondrocytes were isolated,cultured in vitro,and identified.(2)Cell counting kit-8 was used to detect the optimal intervention concentration of Complanatoside A in the concentration range of 0-160 μmol/L.(3)Chondrocytes were divided into blank group,sodium nitroprusside(1.5 mmol/L)-induced group,and sodium nitroprusside(1.5 mmol/L)+Complanatoside A(5 μmol/L)group.The viability and apoptosis rate of the cells in each group were detected by cell counting kit-8 and flow cytometry.The expression of type Ⅱ collagen and SOX9 was detected by immunofluorescence staining.The expression of apoptosis-related proteins and Wnt/β-catenin pathway proteins was detected by western blot assay. RESULTS AND CONCLUSION:The cells extracted in vitro were cultured and stained,and were clearly identified as chondrocytes.Complanatoside A had no obvious cytotoxicity to chondrocytes in the concentration range of 0-80 μmol/L,and significantly improved the chondrocyte viability in the concentration range of 2.5-10 μmol/L,especially when the concentration was 5 μmol/L.The apoptotic rate of chondrocytes was higher in the sodium nitroprusside-induced group than the blank control group,while the apoptotic rate was lower in the sodium nitroprusside+Complanatoside A group than the sodium nitroprusside-induced group.The fluorescence intensity of type Ⅱ collagen and SOX9 in chondrocytes was weaker in the sodium nitroprusside-induced group than the blank control group,while the fluorescence intensity of type Ⅱ collagen and SOX9 in the sodium nitroprusside+Complanatoside A group was higher than that of the sodium nitroprusside-induced group.In the sodium nitroprusside-induced group,the protein expression of Bax,Caspase-3,matrix metalloproteinase 13,Wnt3a,Wnt5a and β-catenin was higher than that of the blank control group,while the protein expression of Bcl-2 was lower than that of the blank control group.In the sodium nitroprusside+Complanatoside A group,except for the protein expression of Bcl-2 which was higher than that of the sodium nitroprusside-induced group,the expression of the other aforementioned proteins was lower than that of the sodium nitroprusside-induced group.To conclude,Complanatoside A has a certain inhibitory effect on chondrocyte apoptosis,which could regulate apoptosis-related proteins and promote the expression of chondrocyte regulatory factors,and presumably might play a role through inhibiting the Wnt/β-catenin signaling pathway.
4.Preliminary Construction of Comprehensive Evaluation System for TCM Clinical Practice Guidelines Based on Bibliometric Analysis and Core Element Extraction
Xue CHEN ; Gezhi ZHANG ; Danping ZHENG ; Fangqi LIU ; An LI ; Junjie JIANG ; Nannan SHI ; Wei YANG ; Xinghua XIANG ; Mengyu LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):209-219
ObjectiveTo construct a comprehensive evaluation indicator system for clinical practice guidelines of traditional Chinese medicine (TCM) that is scientific, systematic, and reflects the characteristics of TCM. MethodsA systematic search was conducted in Chinese and English databases, including CNKI, Wanfang, VIP, SinoMed, PubMed, Embase, and Cochrane Library, to include literature on domestic and international guideline evaluation tools and TCM-related research. Document analysis and CiteSpace were utilized for keyword co-occurrence and clustering analysis. ResultsA total of 65 relevant studies were included, from which seven core thematic domains were identified. Based on the research objectives, a two-step construction strategy was adopted: first, an external evaluation framework was established by referencing international tools to cover methodological rigor and procedural standardization; second, an internal evaluation framework was developed to reflect the distinctive features of TCM clinical practice, including syndrome differentiation and efficacy feedback. Through expert consensus, the indicator system was refined, resulting in a dual-layered structure comprising 8 primary indicators, 22 secondary indicators, and 62 evaluation criteria. ConclusionThe comprehensive evaluation system for TCM clinical practice guidelines, based on bibliometric analysis and core element extraction, integrates both theoretical integrity and practical applicability. This study provides a preliminary research foundation for further optimization, validation, and development of a refined comprehensive evaluation system.
5.Clinical efficacy of robot-assisted single-position OLIF with lateral plate combined with posterior unilateral fixation for single-segment lumbar spinal stenosis.
Yuekun FANG ; Zhilin YANG ; Haotian LI ; Weizhou WANG ; Hangchuang BI ; Bing WANG ; Junjie DONG ; Jin YANG ; Zhiqiang GONG ; Lingqiang CHEN
Journal of Central South University(Medical Sciences) 2025;50(1):119-129
OBJECTIVES:
Oblique lateral interbody fusion (OLIF) has become a well-established treatment for lumbar spinal stenosis (LSS) due to its advantages of being minimally invasive, effective, and associated with fewer complications. However, relying solely on lateral fixation provides limited strength and uneven load distribution. Conventional posterior bilateral fixation after OLIF typically requires intraoperative repositioning, increases fluoroscopy frequency, and involves extensive dissection of posterior muscles and soft tissues, resulting in greater trauma, blood loss, and risks of dural tear, nerve root injury, and persistent postoperative low back pain. This study aims to compare the clinical efficacy of robot-assisted single-position OLIF with lateral plating and posterior unilateral fixation, OLIF with lateral fixation alone, and OLIF combined with posterior bilateral fixation for treating single-segment LSS, and to explore how to enhance fixation stability, reduce trauma, and achieve precise minimally invasive outcomes without changing patient positioning.
METHODS:
A retrospective analysis was conducted on the clinical data from patients treated for single-segment LSS between January 2020 and June 2023 at the First Affiliated Hospital of Kunming Medical University. Patients were divided into 3 groups: Robot group (robot-assisted single-position OLIF with lateral plate and posterior unilateral fixation, 33 cases), lateral group (OLIF with lateral fixation alone, 52 cases), and combined group (OLIF with posterior bilateral fixation, 45 cases). Surgical time, intraoperative blood loss, fluoroscopy frequency, hospital stay, pedicle screw placement accuracy, and complication rates were recorded. Pain visual analogue scale (VAS) scores and Oswestry disability index (ODI) scores were assessed preoperatively, postoperatively, and at the final follow-up. Radiological evaluations (X-ray, computed tomography, and magnetic resonance imaging) measured interbody disc height (IDH), intervertebral foraminal height (IFH), and cross-sectional area (CSA) of the dural sac. Differences between pre- and postoperative imaging indices were statistically analyzed, and complication rates, fusion rates, and cage subsidence rates were recorded.
RESULTS:
All patients exhibited good positioning of internal fixation devices and cages, with significant symptom relief and no cases of spinal cord injury or symptom worsening. The follow-up time was (15.2±3.6) months. The operation time of the robot group was (70.62±8.99) min, which was longer than that of the lateral group (45.90±6.09) min and shorter than that of the combined group (110.12±8.44) min. The intraoperative blood loss of the robot group was (44.27±6.87) mL, which was more than that of the lateral group (33.58±9.73) mL and less than that of the combined group (79.19±10.35) mL. The number of intraoperative fluoroscopy times of the robot group was (9.49±2.25), which was comparable to that of the lateral group (7.45±2.02) but less than that of the combined group (12.24±4.25). The hospital stay of the robot group was (9.28±2.10) days, which was longer than that of the lateral group (7.95±1.91) days and shorter than that of the combined group (12.49±5.07) days. The screw placement accuracy of the robot group was 98.48%, which was higher than that of the combined group (90.55%). Postoperative and final follow-up VAS and ODI scores were significantly lower than preoperative scores in all 3 groups (all P<0.05), and there were no significant differences in preoperative VAS and ODI scores among the groups (all P>0.05). Radiologically, IDH, IFH, and CSA at the surgical segment were significantly increased postoperatively and at final follow-up compared to preoperatively and at final follow-up compared to preoperative values (all P<0.05), with no significant differences among the groups postoperatively (all P>0.05). Internal fixation remained stable during the follow-up period, and all cages achieved fusion at final follow-up. The intervertebral fusion rate of the robot-assisted group was 93.40%, which was similar to that of the combined group (95.56%) and higher than that of the lateral approach group (90.34%). The complication rate of the robot-assisted group was 6.1%, which was comparable to that of the combined group (8.9%) and lower than that of the lateral approach group (15.4%) (P<0.05). No cases of fixation loosening or breakage were observed throughout the follow-up period.
CONCLUSIONS
Robot-assisted single-position OLIF with lateral plate combined with posterior unilateral fixation effectively achieves indirect decompression and excellent spinal stability without the need for intraoperative repositioning. It provides high pedicle screw accuracy, reduces intraoperative blood loss, fluoroscopy times, and complication rates, offering a fully minimally invasive new treatment option for single-segment LSS.
Humans
;
Spinal Stenosis/surgery*
;
Robotic Surgical Procedures/methods*
;
Lumbar Vertebrae/surgery*
;
Spinal Fusion/instrumentation*
;
Male
;
Female
;
Retrospective Studies
;
Middle Aged
;
Aged
;
Treatment Outcome
;
Bone Plates
;
Minimally Invasive Surgical Procedures/methods*
;
Adult
6.Qihuang Jianpi Zishen Granules ameliorate renal damage in MRL/lpr mice by inhibiting the MyD88/NF-κB pathway.
Zhongfu TANG ; Chuanbing HUANG ; Ming LI ; Lili CHENG ; Junjie CHEN ; Shuangshuang SHANG ; Sidi LIU
Journal of Southern Medical University 2025;45(8):1625-1632
OBJECTIVES:
To investigate the mechanism of Qihuang Jianpi Zishen Granules (QJZ) for ameliorating renal damage in MRL/lpr mice.
METHODS:
With 6 female C57BL/6 mice as the normal control group, 30 female MRL/lpr mice were randomized into model group, QJZ treatment groups at low, moderate and high doses, and prednisone treatment group (n=6). After 8 weeks of treatment, the mice were examined for 24-h urine protein, creatinine and albumin levels, serum levels of IgG, complement 3 (C3), C4, anti-dsDNA, interferon γ (IFN‑γ) and interleukin 17 (IL-17). Kidney tissues were sampled for histopathological examination with HE staining and observation of glomerular ultrastructure changes using transmission electron microscopy (TEM). The expressions of MyD88/NF-κB pathway-related molecules in the kidney tissue were detected using RT-qPCR, Western blotting and immunohistochemistry.
RESULTS:
Compared with those in the model group, the mice treated with QJZ at the 3 doses and prednisone showed significant reductions in the renal injury biomarkers and serum IgG, anti-dsDNA, IFN‑γ and IL-17 levels and elevation of serum C3 and C4 levels. HE staining revealed lessened glomerular endothelial cell proliferation and mesangial thickening in all the treatment groups. TEM observation further demonstrated reduced electron-dense deposits and diminished inflammatory cell infiltration in the glomeruli in the intervention groups. QJZ at the 3 doses and prednisone treatment all significantly lowered renal expression levels of MyD88, NF-κB, p65 and p52 in the mouse models.
CONCLUSIONS
QJZ can improve renal damage in MRL/lpr mice possibly by inhibiting overactivation of the MyD88/NF-κB pathway.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Female
;
Mice, Inbred C57BL
;
Mice, Inbred MRL lpr
;
Myeloid Differentiation Factor 88/metabolism*
;
Mice
;
NF-kappa B/metabolism*
;
Signal Transduction/drug effects*
;
Kidney/metabolism*
;
Interleukin-17
7.Qihuang Jianpi Zishen Granules improves renal damage in MRL/lpr mice by inhibiting B cell differentiation via the AIM2/Blimp-1/Bcl-6 axis.
Lili CHENG ; Zhongfu TANG ; Ming LI ; Junjie CHEN ; Shuangshuang SHANG ; Sidi LIU ; Chuanbing HUANG
Journal of Southern Medical University 2025;45(11):2297-2308
OBJECTIVES:
To investigate the efficacy of Qihuang Jianpi Zishen Granules (QJZ) for inhibiting renal B cell differentiation in MRL/lpr mice and explore its underlying mechanism.
METHODS:
Thirty 8-week-old female MRL/lpr mice were randomly divided into model group, QJZ group, prednisone (Pred) group, QJZ+Pred group, and AIM2 inhibitor group (n=6), with 6 8-week-old female C57BL/6 mice as the normal control group. After treatments with normal saline, QJZ, Pred, or AIM2 inhibitor for 8 weeks, the mice were examined for urinary total protein-to-creatinine ratio (TPCR) and albumin-to-creatinine ratio (ACR), serum creatinine (Cr) and blood urea nitrogen (BUN) levels, and renal histopathology (with HE, Masson, and PAS staining) and ultrastructural changes (with electron microscopy). ELISA, immunohistochemistry, immunofluorescence staining and flow cytometry were used to detect blood levels of anti-dsDNA antibodies, cytokines and chemokines, renal deposition of complement components C3 and C4, renal expressions of AIM2, CD19, CD27 and CD138, and changes in splenic B lymphocyte subsets. The effect of QJZ on the AIM2/Blimp-1/Bcl-6 signaling axis was examined using Western blotting.
RESULTS:
QJZ treatment significantly improved Cr, BUN, TPCR and ACR in MRL/lpr mice, ameliorated renal pathologies, reduced the expressions of ds-DNA, BAFF, IL-21, CXCL12, CXCL13, C3 and C4, and increased IL-10 levels. QJZ significantly downregulated renal expressions of the key B-cell transcription factors Blimp-1 and XBP-1, upregulated Bcl-6 and PAX5 expressions, inhibited B-cell differentiation, and lowered the expressions of AIM2, CD27, CD138 and CD69. Inhibition of AIM2 similarly reduced renal Blimp-1 and XBP-1 expressions, increased Bcl-6 and PAX5 levels, suppressed B-cell differentiation, decreased IgG production, reduced C3 and C4 deposition, and alleviated renal pathology in MRL/lpr mice.
CONCLUSIONS
QJZ inhibits B cell differentiation and alleviates renal damage in systemic lupus erythematosus possibly by suppressing the AIM2/Blimp-1/Bcl-6 signaling pathway.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice, Inbred MRL lpr
;
Female
;
Mice
;
Mice, Inbred C57BL
;
Cell Differentiation/drug effects*
;
B-Lymphocytes/drug effects*
;
Proto-Oncogene Proteins c-bcl-6/metabolism*
;
Kidney/drug effects*
;
DNA-Binding Proteins/metabolism*
;
Signal Transduction
;
Lupus Nephritis
8.GALM Alleviates Aβ Pathology and Cognitive Deficit Through Increasing ADAM10 Maturation in a Mouse Model of Alzheimer's Disease.
Na TIAN ; Junjie LI ; Xiuyu SHI ; Mingliang XU ; Qian XIAO ; Qiuyun TIAN ; Mulan CHEN ; Weihong SONG ; Yehong DU ; Zhifang DONG
Neuroscience Bulletin 2025;41(8):1377-1389
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder worldwide, causing dementia and affecting millions of individuals. One prominent characteristic in the brains of AD patients is glucose hypometabolism. In the context of galactose metabolism, intracellular glucose levels are heightened. Galactose mutarotase (GALM) plays a crucial role in maintaining normal galactose metabolism by catalyzing the conversion of β-D-galactose into α-D-galactose (α-D-G). The latter is then converted into glucose-6-phosphate, improving glucose metabolism levels. However, the involvement of GALM in AD progression is still unclear. In the present study, we found that the expression of GALM was significantly increased in AD patients and model mice. Genetic knockdown of GALM using adeno-associated virus did not change the expression of amyloid precursor protein (APP) and APP-cleaving enzymes including a disintegrin and metalloprotease 10 (ADAM10), β-site APP-cleaving enzyme 1 (BACE1), and presenilin-1 (PS1). Interestingly, genetic overexpression of GALM reduced APP and Aβ deposition by increasing the maturation of ADAM10, although it did not alter the expression of BACE1 and PS1. Further electrophysiological and behavioral experiments showed that GALM overexpression significantly ameliorated the deficits in hippocampal CA1 long-term potentiation (LTP) and spatial learning and memory in AD model mice. Importantly, direct α-D-G (20 mg/kg, i.p.) also inhibited Aβ deposition by increasing the maturation of ADAM10, thereby improving hippocampal CA1 LTP and spatial learning and memory in AD model mice. Taken together, our results indicate that GALM shifts APP processing towards α-cleavage, preventing Aβ generation by increasing the level of mature ADAM10. These findings indicate that GALM may be a potential therapeutic target for AD, and α-D-G has the potential to be used as a dietary supplement for the prevention and treatment of AD.
Animals
;
ADAM10 Protein/metabolism*
;
Alzheimer Disease/pathology*
;
Amyloid Precursor Protein Secretases/metabolism*
;
Disease Models, Animal
;
Humans
;
Mice
;
Amyloid beta-Peptides/metabolism*
;
Male
;
Mice, Transgenic
;
Membrane Proteins/metabolism*
;
Cognitive Dysfunction/pathology*
;
Mice, Inbred C57BL
;
Amyloid beta-Protein Precursor/metabolism*
;
Female
;
Hippocampus/metabolism*
;
Long-Term Potentiation/physiology*
9.Oral submucous fibrosis: pathogenesis and therapeutic approaches.
Jianfei TANG ; Junjie LIU ; Zekun ZHOU ; Xinyan CUI ; Hua TU ; Jia JIA ; Baike CHEN ; Xiaohan DAI ; Ousheng LIU
International Journal of Oral Science 2025;17(1):8-8
Oral submucous fibrosis (OSF), characterized by excessive deposition of extracellular matrix (ECM) that causes oral mucosal tissue sclerosis, and even cancer transformation, is a chronic, progressive fibrosis disease. However, despite some advancements in recent years, no targeted antifibrotic strategies for OSF have been approved; likely because the complicated mechanisms that initiate and drive fibrosis remain to be determined. In this review, we briefly introduce the epidemiology and etiology of OSF. Then, we highlight how cell-intrinsic changes in significant structural cells can drive fibrotic response by regulating biological behaviors, secretion function, and activation of ECM-producing myofibroblasts. In addition, we also discuss the role of innate and adaptive immune cells and how they contribute to the pathogenesis of OSF. Finally, we summarize strategies to interrupt key mechanisms that cause OSF, including modulation of the ECM, inhibition of inflammation, improvement of vascular disturbance. This review will provide potential routes for developing novel anti-OSF therapeutics.
Humans
;
Oral Submucous Fibrosis/immunology*
;
Extracellular Matrix/metabolism*
;
Myofibroblasts
10.Liquiritin improves macrophage degradation of engulfed tumour cells by promoting the formation of phagolysosomes via NOX2/gp91phox.
Caiyi YANG ; Kehan CHEN ; Yunliang CHEN ; Xuting XIE ; Pengcheng LI ; Meng ZHAO ; Junjie LIANG ; Xueqian XIE ; Xiaoyun CHEN ; Yanping CAI ; Bo XU ; Qing WANG ; Lian ZHOU ; Xia LUO
Journal of Pharmaceutical Analysis 2025;15(5):101093-101093
The incomplete degradation of tumour cells by macrophages (Mϕ) is a contributing factor to tumour progression and metastasis, and the degradation function of Mϕ is mediated through phagosomes and lysosomes. In our preliminary experiments, we found that overactivation of NADPH oxidase 2 (NOX2) reduced the ability of Mϕ to degrade engulfed tumour cells. Above this, we screened out liquiritin from Glycyrrhiza uralensis Fisch, which can significantly inhibit NOX2 activity and inhibit tumours, to elucidate that suppressing NOX2 can enhance the ability of Mϕ to degrade tumour cells. We found that the tumour environment could activate the NOX2 activity in Mϕ phagosomes, causing Mϕ to produce excessive reactive oxygen species (ROS), thus prohibiting the formation of phagolysosomes before degradation. Conversely, inhibiting NOX2 in Mϕ by liquiritin can reduce ROS and promote phagosome-lysosome fusion, therefore improving the enzymatic degradation of tumour cells after phagocytosis, and subsequently promote T cell activity by presenting antigens. We further confirmed that liquiritin down-regulated the expression of the NOX2 specific membrane component protein gp91 phox, blocking its binding to the NOX2 cytoplasmic component proteins p67 phox and p47 phox, thereby inhibiting the activity of NOX2. This study elucidates the specific mechanism by which Mϕ cannot degrade tumour cells after phagocytosis, and indicates that liquiritin can promote the ability of Mϕ to degrade tumour cells by suppressing NOX2.

Result Analysis
Print
Save
E-mail