1.Analysis of Changes in Relative Value Scale and Frequency of Surgery and Procedures in Surgery Departments Over the Past 18 Years: Secondary Publication
Jae Hoon CHO ; Sei Young LEE ; Seung Hoon LEE ; Seog-Kyun MUN ; Jung Hyun CHANG ; Chan-Soon PARK
Korean Journal of Otolaryngology - Head and Neck Surgery 2025;68(2):67-73
Background and Objectives:
The purpose of this study was to compare and analyze the 18- year change in the relative value scale (RVS) in otolaryngology in relation to other surgical departments so as to help make future policy decisions.Subjects and Method Data on RVSs and addition rates, the deparments of main managed care, frequency of practice, and number of specialists were collected for all surgeries and procedures conducted in 2004, 2008, 2013, 2018, and 2022. Among these, an analysis was conducted for nine surgical departments. The number of surgeries and procedure items, the median value of the RVS, and the usage amount (i.e., RVS of all items multiplied by the frequency of surgeries and procedures) were calculated.
Results:
Over the past 18 years, the increase in the number of surgeries, procedure items and RVS in otolaryngology has grown smaller than that in other surgical departments, and the usage has decreased very sharply; in essence, the usage per specialist has actually decreased compared to 18 years ago.
Conclusion
Compared to other departments, RVS in otorhinolaryngology has shown very little change over the past period of 18 years. It is necessary to reasonably increase the currently undervalued RVS in otorhinolaryngology, particularly focusing on surgeries and procedures.
2.Interpretation, Reporting, Imaging-Based Workups, and Surveillance of Incidentally Detected Gallbladder Polyps and Gallbladder Wall Thickening: 2025 Recommendations From the Korean Society of Abdominal Radiology
Won CHANG ; Sunyoung LEE ; Yeun-Yoon KIM ; Jin Young PARK ; Sun Kyung JEON ; Jeong Eun LEE ; Jeongin YOO ; Seungchul HAN ; So Hyun PARK ; Jae Hyun KIM ; Hyo Jung PARK ; Jeong Hee YOON
Korean Journal of Radiology 2025;26(2):102-134
Incidentally detected gallbladder polyps (GBPs) and gallbladder wall thickening (GBWT) are frequently encountered in clinical practice. However, characterizing GBPs and GBWT in asymptomatic patients can be challenging and may result in overtreatment, including unnecessary follow-ups or surgeries. The Korean Society of Abdominal Radiology (KSAR) Clinical Practice Guideline Committee has developed expert recommendations that focus on standardized imaging interpretation and follow-up strategies for both GBPs and GBWT, with support from the Korean Society of Radiology and KSAR. These guidelines, which address 24 key questions, aim to standardize the approach for the interpretation of imaging findings, reporting, imaging-based workups, and surveillance of incidentally detected GBPs and GBWT. This recommendation promotes evidence-based practice, facilitates communication between radiologists and referring physicians, and reduces unnecessary interventions.
3.Changing Gadolinium-Based Contrast Agents to Prevent Recurrent Acute Adverse Drug Reactions: 6-Year Cohort Study Using Propensity Score Matching
Min Woo HAN ; Chong Hyun SUH ; Pyeong Hwa KIM ; Seonok KIM ; Ah Young KIM ; Kyung-Hyun DO ; Jeong Hyun LEE ; Dong-Il GWON ; Ah Young JUNG ; Choong Wook LEE
Korean Journal of Radiology 2025;26(2):204-204
4.Radiofrequency Ablation for Recurrent Thyroid Cancers:2025 Korean Society of Thyroid Radiology Guideline
Eun Ju HA ; Min Kyoung LEE ; Jung Hwan BAEK ; Hyun Kyung LIM ; Hye Shin AHN ; Seon Mi BAEK ; Yoon Jung CHOI ; Sae Rom CHUNG ; Ji-hoon KIM ; Jae Ho SHIN ; Ji Ye LEE ; Min Ji HONG ; Hyun Jin KIM ; Leehi JOO ; Soo Yeon HAHN ; So Lyung JUNG ; Chang Yoon LEE ; Jeong Hyun LEE ; Young Hen LEE ; Jeong Seon PARK ; Jung Hee SHIN ; Jin Yong SUNG ; Miyoung CHOI ; Dong Gyu NA ;
Korean Journal of Radiology 2025;26(1):10-28
Radiofrequency ablation (RFA) is a minimally invasive treatment modality used as an alternative to surgery in patients with benign thyroid nodules, recurrent thyroid cancers (RTCs), and primary thyroid microcarcinomas. The Korean Society of Thyroid Radiology (KSThR) initially developed recommendations for the optimal use of RFA for thyroid tumors in 2009 and revised them in 2012 and 2017. As new meaningful evidence has accumulated since 2017 and in response to a growing global interest in the use of RFA for treating malignant thyroid lesions, the task force committee members of the KSThR decided to update the guidelines on the use of RFA for the management of RTCs based on a comprehensive analysis of current literature and expert consensus.
5.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
6.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
7.Implementation of a Learning Management System at Yonsei University College of Medicine
Hanna JUNG ; Hangil KIM ; Hyung-Jin RHEE ; Sang Ah LEE ; Shinki AN ; Young Han LEE
Korean Medical Education Review 2025;27(1):40-51
This paper details the development and implementation of Yonsei Medical E-Learning System 3.0 (YES 3.0), a new learning management system (LMS) for Yonsei University College of Medicine. Driven by the need to adapt to a rapidly changing medical education landscape, YES 3.0 addresses the previous system’s limitations and incorporates advanced features designed to improve learning experiences and educational outcomes. The development process involved extensive collaboration among faculty, students, staff, and the system developer, ensuring the system's alignment with the unique needs of the medical education environment. YES 3.0 features real-time monitoring of learning progress, comprehensive evaluation and grade management, personalized learning path recommendations, effective learner history management, and interview/guidance management functionalities. The system also supports the newly revised CDP2023 (Curriculum Development Project 2023) curriculum, with integrated learning across all courses and a strengthened scholarly advanced course. By automating and streamlining various educational processes, YES 3.0 enables maximized learning efficiency, promotes learner-centered education, and supports the cultivation of future medical professionals equipped to navigate the evolving healthcare environment. Implementing the system is expected to have positive impacts on both educational and economic aspects, contributing to the advancement of medical education at Yonsei University College of Medicine. This study also aims to offer insights and expected outcomes that can serve as a reference for other medical schools in adopting and operating LMS, ultimately providing useful information to educators considering establishing a digital learning environment.
8.Brain Injury and Short-Term Neurodevelopmental Outcomes in Neonates Treated with Respiratory Extracorporeal Membrane Oxygenation: A Single-Center Experience
Keon Hee SEOL ; Byong Sop LEE ; Kyusang YOO ; Joo Hyung ROH ; Jeong Min LEE ; Jung Il KWAK ; Tae-Gyeong KIM ; Juhee PARK ; Ha Na LEE ; Chae Young KIM ; Soo Hyun KIM ; Ji Yoon JEONG ; Euiseok JUNG
Neonatal Medicine 2025;32(1):39-48
Purpose:
This study aimed to characterize the clinical patterns and severity of brain injury in neonates who survived extracorporeal membrane oxygenation (ECMO) therapy for acute respiratory failure during the neonatal period, to evaluate their short-term neurodevelopmental outcomes, and to identify the factors associated with these outcomes.
Methods:
We retrospectively reviewed the medical records of neonates who survived ECMO between 2018 and 2024. Based on brain magnetic resonance imaging (MRI) findings, the patients were classified into two groups: no/mild and moderate/severe brain injury. Neurodevelopmental outcomes were assessed at 12–40 months of age using the Bayley Scale of Infant Development II/III and/or the Korean Developmental Screening Test.
Results:
Among the 19 neonates included in the study, 18 (94.7%) showed varying degrees of brain injury on MRI (mild: 12, moderate: 1, severe: 5). Neonates with moderate/severe brain injury had significantly longer durations of ECMO support and extended durations of mechanical ventilation and were more likely to receive continuous renal replacement therapy than those with no or mild injury. Developmental delay was identified in 36.8% of survivors and was significantly associated with prolonged mechanical ventilation, longer neonatal intensive care unit stays, and a higher incidence of seizures.
Conclusion
Brain injury is frequently observed on MRI in neonates treated with ECMO. However, its direct association with adverse neurodevelopmental outcomes is not definitive. Since MRI findings alone cannot predict developmental outcomes, clinical and environmental factors should be integrated into prognostic assessments.
9.Permanent Congenital Hypothyroidism in Very Low Birth Weight Infants: A Single Center’s Experience
Joo Hyung ROH ; Tae-Gyeong KIM ; Keon Hee SEOL ; Chae Young KIM ; Soo Hyun KIM ; Ji Yoon JEONG ; Ja Hye KIM ; Euiseok JUNG ; Jin-Ho CHOI ; Byong Sop LEE
Neonatal Medicine 2025;32(1):30-38
Purpose:
Congenital hypothyroidism (CH) is a major preventable cause of intellectual disability, particularly in very low birth weight (VLBW) infants, who are at increased risk due to hypothalamic-pituitary-thyroid axis immaturity. Early differentiation between transient CH (TCH) and permanent CH (PCH) is crucial to optimize L-thyroxine (LT4) treatment duration. This study aimed to determine the incidence of PCH among Korean VLBW infants and to identify clinical factors that may aid in distinguishing TCH from PCH.
Methods:
This retrospective cohort study included VLBW infants diagnosed with CH and treated with LT4 at a single tertiary neonatal intensive care unit between 2011 and 2020. Infants requiring LT4 beyond 3 years were classified as PCH, while those who discontinued earlier were considered TCH. Clinical characteristics, neonatal morbidities, and thyroid-related parameters were compared between the groups.
Results:
Among 1,292 VLBW infants, 122 (9.4%) were diagnosed with CH. After excluding deaths and those lost to follow-up, 73 infants were included in the final analysis (TCH, n=50; PCH, n=23). The PCH group had a significantly higher mean gestational age and greater LT4 requirements at both 12 and 36 months of age. Major anomalies were more frequently observed in PCH infants, including congenital heart defects. In multivariate analysis, higher gestational age, the presence of major anomalies, screening thyroid-stimulating hormone (TSH) >10 μIU/mL, and higher LT4 dose at 36 months were significantly associated with PCH.
Conclusion
The incidence of PCH in Korean VLBW infants was relatively higher than that reported in previous studies studies. Screening TSH level and LT4 dose requirements may support individualized follow-up and help distinguish PCH from TCH.
10.The Effect of Postnatal Systemic Corticosteroid on Neurodevelopmental Outcome in Very Low Birth Weight Preterm Infants
Joo Yun YANG ; Young Min YOUN ; Jung In KANG ; Ye Jin HAN ; Do Kyung LEE ; Hyun Kyung BAE ; So-Yeon SHIM
Neonatal Medicine 2025;32(1):10-20
Purpose:
This study aimed to investigate the effects of postnatal systemic corticosteroids on neurodevelopment in very low birth weight (VLBW) preterm infants.
Methods:
This was a population-based study of the Korean Neonatal Network of VLBW infant born at 23+0 and 31+6 weeks of gestation between 2013 and 2020. VLBW preterm infants assessed using the Bayley Scales of Infant and Toddler Development, third edition (BSID-III) at 18–24 months of corrected age and 3 years of age were enrolled. The primary outcomes were BSID-III scores and neurodevelopmental delays, with scores of <85. Socioeconomic status and clinical variables were adjusted for using multivariate regression analyses.
Results:
In total, 517 infants were enrolled in this study. Among the 216 (41.8%) infants who received postnatal systemic corticosteroids, the rate of cognitive delay was significantly higher at 18–24 months of corrected age than at 3 years of age. The rates of language and motor delays were significantly higher both at 18–24 months of corrected age and at 3 years of age. When multivariate logistic regression was performed, postnatal systemic corticosteroid use was significantly associated with cognitive delay at 18–24 months of corrected age, but not at 3 years of age. There was no significant association between postnatal systemic corticosteroid use and language or motor delay at 18-24 months of corrected age or at 3 years of age after multivariate logistic regression.
Conclusion
Postnatal systemic corticosteroid use in VLBW preterm infants increased the risk of cognitive delay at 18–24 months of corrected age, but not at 3 years.

Result Analysis
Print
Save
E-mail